[1]严菲,王晓栋.鲁棒的半监督多标签特征选择方法[J].智能系统学报,2019,14(4):812-819.[doi:10.11992/tis.201809017]
 YAN Fei,WANG Xiaodong.A robust, semi-supervised, and multi-label feature selection method[J].CAAI Transactions on Intelligent Systems,2019,14(4):812-819.[doi:10.11992/tis.201809017]
点击复制

鲁棒的半监督多标签特征选择方法

参考文献/References:
[1] YU Lei, LIU Huan. Feature selection for high-dimensional data:a fast correlation-based filter solution[C]//Proceedings of the 20th International Conference on International Conference on Machine Learning. Washington DC, USA, 2003:856-863.
[2] 胡敏杰, 林耀进, 杨红和, 等. 基于特征相关的谱特征选择算法[J]. 智能系统学报, 2017, 12(4):519-525 HU Minjie, LIN Yaojin, YANG Honghe, et al. Spectral feature selection based on feature correlation[J]. CAAI transactions on intelligent systems, 2017, 12(4):519-525
[3] YANG Yi, SHEN Hengtao, MA Zhigang, et al. l2,1-norm regularized discriminative feature selection for unsupervised learning[C]//Proceedings of the 22th International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011:1589-1594.
[4] WANG Xiaodong, ZHANG Xu, ZENG Zhiqiang, et al. Unsupervised spectral feature selection with l1 norm graph[J]. Neurocomputing, 2016, 200:47-54.
[5] DOQUIRE G, VERLEYSEN M. A graph Laplacian based approach to semi-supervised feature selection for regression problems[J]. Neurocomputing, 2013, 121:5-13.
[6] LIU Yun, NIE Feiping, WU Jigang, et al. Efficient semi-supervised feature selection with noise insensitive trace ratio criterion[J]. Neurocomputing, 2013, 105:12-18.
[7] MA Zhigang, NIE Feiping, YANG Yi, et al. Discriminating joint feature analysis for multimedia data understanding[J]. IEEE transactions on multimedia, 2012, 14(6):1662-1672.
[8] JI Shuiwang, TANG Lei, YU Shipeng, et al. A shared-subspace learning framework for multi-label classification[J]. ACM transactions on knowledge discovery from data, 2010, 4(2):8.
[9] 张俐, 王枞. 基于最大相关最小冗余联合互信息的多标签特征选择算法[J]. 通信学报, 2018, 39(5):111-122 ZHANG Li, WANG Cong. Multi-label feature selection algorithm based on joint mutual information of max-relevance and min-redundancy[J]. Journal on communications, 2018, 39(5):111-122
[10] ALALGA A, BENABDESLEM K, TALEB N. Soft-constrained Laplacian score for semi-supervised multi-label feature selection[J]. Knowledge and information systems, 2016, 47(1):75-98.
[11] CHANG Xiaojun, NIE Feiping, YANG Yi, et al. A convex formulation for semi-supervised multi-label feature selection[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City, Québec, Canada, 2014:1171-1177.
[12] ZHOU Sihang, LIU Xinwang, ZHU Chengzhang, et al. Spectral clustering-based local and global structure preservation for feature selection[C]//Proceedings of 2014 International Joint Conference on Neural Networks. Beijing, China, 2014:550-557.
[13] NIE Feiping, WANG Hua, HUANG Heng, et al. Unsupervised and semi-supervised learning via l1 norm graph[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:2268-2273.
[14] LIU Yun, GUO Yiming, WANG Hua, et al. Semi-supervised classifications via elastic and robust embedding[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017:2294-2300.
[15] SCHÖLKOPF B, PLATT J, HOFMANN T. Multi-instance multi-label learning with application to scene classification[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. Hong Kong, China, 2006:1609-1616.
[16] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. Vancouver, Canada, 2001:681-687.
[17] UEDA N, SAITO K. Parametric mixture models for multi-labeled text[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA, 2002:737-744.
[18] ZHANG Minling, ZHOU Zhihua. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[19] MARON O, RATAN A L. Multiple-instance learning for natural scene classification[C]//Proceedings of 15th International Conference on Machine Learning. San Francisco, CA, USA, 1998:341-349.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2(4):34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(4):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(4):254.
[4]李建元,周脚根,关佶红,等.谱图聚类算法研究进展[J].智能系统学报,2011,6(5):405.
 LI Jianyuan,ZHOU Jiaogen,GUAN Jihong,et al.A survey of clustering algorithms based on spectra of graphs[J].CAAI Transactions on Intelligent Systems,2011,6(4):405.
[5]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(4):189.
[6]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8(4):439.[doi:10.3969/j.issn.1673-4785.201305033]
[7]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10(4):215.[doi:10.3969/j.issn.1673-4785.201405063]
[8]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
[9]蒋新华,高晟,廖律超,等.半监督SVM分类算法的交通视频车辆检测方法[J].智能系统学报,2015,10(5):690.[doi:10.11992/tis.201406044]
 JIANG Xinhua,GAO Sheng,LIAO Ljuchao,et al.Traffic video vehicle detection based on semi-supervised SVM classification algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(4):690.[doi:10.11992/tis.201406044]
[10]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(4):210.[doi:10.3969/j.issn.1673-4785.201307014]

备注/Memo

收稿日期:2018-09-13。
基金项目:国家自然科学基金项目(61871464);福建省自然科学基金面上项目(2017J01511);福建省中青年教师科研项目(JAT170417);厦门理工学院科研攀登计划项目(XPDKQ18012).
作者简介:严菲. 女,1985年生,实验师,主要研究方向为特征选择、机器学习。主持福建省教育厅中青年教师项目1项。发表学术论文5篇;王晓栋,男,1983年生,副教授,博士,主要研究方向为机器学习、图像处理。主持福建省自然科学基金面上项目1项,福建教育厅中青年教师项目1项。发表学术论文10篇。
通讯作者:严菲.E-mail:fyan@xmut.edu.cn

更新日期/Last Update: 2019-08-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134