[1]胡志勇,米据生,冯涛,等.双论域下多粒度模糊粗糙集上下近似的包含关系[J].智能系统学报,2019,14(01):115-120.[doi:10.11992/tis.201804046]
 HU Zhiyong,MI Jusheng,FENG Tao,et al.Inclusion relation of upper and lower approximations of multigranularity fuzzy rough set in two universes[J].CAAI Transactions on Intelligent Systems,2019,14(01):115-120.[doi:10.11992/tis.201804046]
点击复制

双论域下多粒度模糊粗糙集上下近似的包含关系(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年01期
页码:
115-120
栏目:
出版日期:
2019-01-05

文章信息/Info

Title:
Inclusion relation of upper and lower approximations of multigranularity fuzzy rough set in two universes
作者:
胡志勇1 米据生1 冯涛2 姚爱梦1
1. 河北师范大学 数学与信息科学学院, 河北 石家庄 050024;
2. 河北科技大学 理学院, 河北 石家庄 050024
Author(s):
HU Zhiyong1 MI Jusheng1 FENG Tao2 YAO Aimeng1
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China;
2. School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050024, China
关键词:
模糊集粗糙集双论域多粒度上近似下近似标准化包含关系充分条件
Keywords:
fuzzy setrough setdual domainmulti-granularityupper approximationlower approximationstandardized methodinclusion relationsufficient condition
分类号:
O236;TP18
DOI:
10.11992/tis.201804046
摘要:
针对双论域上集合的多粒度乐观与悲观上下近似不具有包含关系的问题,本文给出了双论域上集合的多粒度上下近似具有包含关系的一个充分条件,进而采用标准化的方法将不具有包含关系的上下近似转化为具有包含关系的上下近似。通过实例验证,该方法能有效解决双论域下多粒度模糊粗糙集上下近似具有包含关系的问题。
Abstract:
To solve the problem that the upper and lower approximations of multigranularity rough set in two universe may no longer have an inclusion relation, this paper will present a sufficient condition for the inclusion relation of the upper and lower approximations in two universes. Furthermore, we use the standardized method to transform upper and lower approximations with no inclusion relation into upper and lower approximations with an inclusion relation. It is verified by an example that this method can effectively solve the problem that the upper and lower approximations of the multigranularity fuzzy rough set in two universes have inclusion relation.

参考文献/References:

[1] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3):338-353.
[2] PAWLAK Z. Rough sets[J]. International journal of computer and information sciences, 1982, 11(5):341-356.
[3] QIAN Yuhua, LIANG Jiye, DANG Chuangyin. Incomplete multigranulation rough set[J]. IEEE transactions on systems, man, and cybernetics-part a:systems and humans, 2010, 40(2):420-431.
[4] QIAN Yuhua, LI Shunyong, LIANG Jiye, et al. Pessimistic rough set based decisions:a multigranulation fusion strate-gy[J]. Information sciences, 2014, 264:196-210.
[5] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranu-lation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1):225-237.
[6] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS:a multigranulation rough set[J]. Information sciences, 2010, 180(6):949-970.
[7] XU Weihua, LI Wentao, ZHANG Xiantao. Generalized multigranulation rough sets and optimal granularity selec-tion[J]. Granular computing, 2017, 2(4):271-288.
[8] TAN Anhui, WU Weizhi, TAO Yuzhi. On the belief struc-tures and reductions of multigranulation spaces with deci-sions[J]. International journal of approximate reasoning, 2017, 88:39-52.
[9] QIAN Yuhua, LIANG Xinyan, LIN Guoping, et al. Local multigranulation decision-theoretic rough sets[J]. Interna-tional journal of approximate reasoning, 2017, 82:119-137.
[10] 邱雅竹, 付蓉. 两个论域上的粗糙集模型及其应用[J]. 四川师范大学学报(自然科学版), 2005, 28(1):15-18 QIU Yazhu, FU Rong. Rough set model over two universes and application[J]. Journal of Sichuan normal university (natural science), 2005, 28(1):15-18
[11] SUN Bingzhen, MA Weimin. Fuzzy rough set model on two different universes and its application[J]. Applied mathematical modelling, 2011, 35(4):1798-1809.
[12] ZHANG Chao, LI Deyu, LIANG Jiye. Hesitant fuzzy linguistic rough set over two universes model and its ap-plications[J]. International journal of machine learning and cybernetics, 2018, 9(4):577-588.
[13] HUANG Bing, GUO Chunxiang, LI Huaxiong, et al. An intuitionistic fuzzy graded covering rough set[J]. Knowledge-based systems, 2016, 107:155-178.
[14] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京:科学出版社, 2003:1-259.
[15] 张文修, 梁怡, 徐萍. 基于包含度的不确定推理[M]. 北京:清华大学出版社, 2007:1-310.
[16] 梁美社, 米据生, 赵天娜. 广义优势多粒度直觉模糊粗糙集及规则获取[J]. 智能系统学报, 2017, 12(6):883-888 LIANG Meishe, MI Jusheng, ZHAO Tianna. Generalized dominance-based multi-granularity intuitionistic fuzzy rough set and acquisition of decision rules[J]. CAAI transactions on intelligent systems, 2017, 12(6):883-888
[17] ZHANG Chao, Li Deyu, SANGAIAH A K, et al. Merger and acquisition target selection based on interval neutro-sophic multigranulation rough sets over two universes[J]. Symmetry, 2017, 9(7):126.
[18] ZHANG Chao, LI Deyu, YAN Yan. A dual hesitant fuzzy multigranulation rough set over two-universe model for medical diagnoses[J]. Computational and mathematical methods in medicine, 2015, 5:1-12.
[19] XU Weihua, WANG Qiaorong, ZHANG Xiantao. Mul-ti-granulation fuzzy rough sets in a fuzzy tolerance ap-proximation space[J]. International journal of fuzzy systems, 2011, 13(4):246-259.
[20] SUN Bingzhen, MA Weimin. Multigranulation rough set theory over two universes[J]. Journal of intelligent and fuzzy systems, 2015, 28(3):1251-1269.
[21] SUN Bingzhen, MA Weimin, QIAN Yuhua. Multigranula-tion fuzzy rough set over two universes and its application to decision making[J]. Knowledge-based systems, 2017, 123:61-74.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(01):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(01):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(01):40.
[4]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(01):65.
[5]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(01):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[6]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(01):132.
[7]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(01):254.
[8]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(01):273.[doi:10.3969/j.issn.1673-4785.201312008]
[9]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(01):75.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10(01):75.[doi:10.3969/j.issn.1673-4785.201410004]
[10]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(01):783.[doi:10.11992/tis.201406045]
[11]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(01):8.
[12]刘洪伟,王艳平.区间直觉模糊粗糙集的不确定性研究[J].智能系统学报,2014,9(05):613.[doi:10.3969/j.issn.1673-4785.201307007]
 LIU Hongwei,WANG Yanping.Research on uncertainty of interval-valued intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2014,9(01):613.[doi:10.3969/j.issn.1673-4785.201307007]
[13]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11(01):743.[doi:10.11992/tis.201612014]
[14]汪培庄.因素空间理论——机制主义人工智能理论的数学基础[J].智能系统学报,2018,13(01):37.[doi:10.11992/tis.201711034]
 WANG Peizhuang.Factor space-mathematical basis of mechanism based artificial intelligence theory[J].CAAI Transactions on Intelligent Systems,2018,13(01):37.[doi:10.11992/tis.201711034]

备注/Memo

备注/Memo:
收稿日期:2018-04-25。
基金项目:国家自然科学基金项目(61573127,61502144);河北省博士后择优资助科研项目(B2016003013);河北省高等学校自然科学基金项目(QN2016133,QN2017095);河北省三三三人才工程培养经费项目(A2017002112);河北师范大学博士基金项目(L2017B19);河北师范大学硕士研究生创新项目(CXZZSS2018062);河北省自然科学基金项目(A2018210120).
作者简介:胡志勇,男,1992年生,硕士研究生,主要研究方向为粗糙集、证据理论;米据生,男,1966年生,教授,博士生导师,博士,主要研究方向为粗糙集、概念格、近似推理;冯涛,女,1980年生,副教授,主要研究方向为粗糙集、证据理论、人工智能。
通讯作者:胡志勇.E-mail:panghuyouxiang@163.com
更新日期/Last Update: 1900-01-01