[1]王文彬,秦小林,张力戈,等.基于滚动时域的无人机动态航迹规划[J].智能系统学报,2018,13(04):524-533.[doi:10.11992/tis.201708031]
 WANG Wenbin,QIN Xiaolin,ZHANG Lige,et al.Dynamic UAV trajectory planning based on receding horizon[J].CAAI Transactions on Intelligent Systems,2018,13(04):524-533.[doi:10.11992/tis.201708031]
点击复制

基于滚动时域的无人机动态航迹规划(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年04期
页码:
524-533
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Dynamic UAV trajectory planning based on receding horizon
作者:
王文彬12 秦小林123 张力戈12 张国华12
1. 中国科学院 成都计算机应用研究所, 四川 成都 610041;
2. 中国科学院大学 计算机与控制学院, 北京 100080;
3. 广州大学 智能软件研究院, 广东 广州 510006
Author(s):
WANG Wenbin12 QIN Xiaolin123 ZHANG Lige12 ZHANG Guohua12
1. Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China;
2. School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100080, China;
3. Academy of Intelligent Software, Guangzhou University, Guangzhou 510006, China
关键词:
航迹规划滚动时域控制VORONOI图变权重粒子群优化人工势场
Keywords:
trajectory planningreceding horizon controlVORONOI graphvariable weightparticle swarm optimizationartificial potential field
分类号:
TP18;V279
DOI:
10.11992/tis.201708031
摘要:
针对带有动力学约束的多旋翼无人机航迹规划问题,提出了一种基于滚动时域控制和快速粒子群优化(RHC-FPSO)方法。该方法引入了基于VORONOI图的代价图方法说明从航迹端点到达目标点的距离估计。根据滚动时域和人工势场法的思想,将路径规划问题转化为优化问题,以最小距离和其他性能指标为代价函数。设计评价函数准则,按照评价准则使用变权重粒子群优化算法求解。针对无人机靠近危险区飞行的问题,将斥力场引入到代价函数中,提升其安全性。仿真实验结果显示,使用文中方法可以有效地在满足约束条件下穿过障碍物区域,以及在复杂环境下可以动态计算。
Abstract:
Using receding horizon control and fast particle swarm optimization (RHC-FPSO), in this paper, we propose an algorithm for unmanned aerial vehicle (UAV) trajectory planning with dynamic constraints. We introduce the cost map method based on the VORONOI graph to estimate the distance from the end point of the trajectory to the target point. Using the concept of receding horizon control and the artificial potential field method, the path planning problem is transformed into an optimization problem, with the minimum distance and other performance indicators as cost functions. We design the evaluation function criteria based on the evaluation criteria and obtain the solution using a particle swarm optimization algorithm with variable weight. To address the problem in which a UAV approaches a danger zone, we introduce a repulsion field into the cost function to ensure safety. The simulation results show that the proposed method can effectively avoid obstacles within the constraint conditions and perform dynamic calculations in a complicated environment.

参考文献/References:

[1] 郑昌文, 严平, 丁明跃, 等. 飞行器航迹规划[M]. 北京:国防工业出版社, 2008. ZHENG Changwen, YAN Ping, DING Mingyue, et al. Route planning for air vehicles[M]. Beijing:National Defense Industry Press, 2008.
[2] LEE M C, PARK M G. Artificial potential field based path planning for mobile robots using a virtual obstacle concept[C]//Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. Kobe, Japan, 2003:735-740.
[3] GARCIA M A P, MONTIEL O, CASTILLO O, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[J]. Applied soft computing, 2009, 9(3):1102-1110.
[4] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE transactions on robotics and automation, 1996, 12(4):566-580.
[5] PHARPATARA P, HÉRISSÉ B, BESTAOUI Y. 3-D trajectory planning of aerial vehicles using RRT[J]. IEEE transactions on control systems technology, 2017, 25(3):1116-1123.
[6] XIAO Hanzhen, LI Zhijun, YANG Chenguang, et al. Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization[J]. IEEE transactions on industrial electronics, 2017, 64(1):505-516.
[7] LIU Yang, YU Shuyou, GUO Yang, et al. Receding horizon control for path following problems of wheeled mobile robots[J]. Control theory & application, 2017, 34(4):424-432.
[8] BELLINGHAM J, RICHARDS A, HOW J P. Receding horizon control of autonomous aerial vehicles[C]//Proceedings of the 2002 American Control Conference. Anchorage, AK, USA, 2002:3741-3746.
[9] KUWATA Y, SCHOUWENAARS T, RICHARDS A, et al. Robust constrained receding horizon control for trajectory planning[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. San Francisco, 2005:6079-6091.
[10] RICHARDS A, HOW J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming[C]//Proceedings of the 2002 American Control Conference. Anchorage, AK, USA, 2002:1936-1941.
[11] 张航, 王琦. 基于RHC的无人机自主轨迹优化算法研究[J]. 航空计算技术, 2007, 37(4):67-70. ZHANG Hang, WANG Qi. Study on trajectory optimization algorithm for UAV using receding horizon control[J]. Aeronautical computing technique, 2007, 37(4):67-70.
[12] 张胜祥. 基于滚动时域MILP的小型无人机航迹规划[D]. 广州:华南理工大学, 2009. ZHANG Shengxiang. Path planning of small-scale unmanned helicopters using receding horizon MILP[D]. Guangzhou, China:South China University of Technology, 2009.
[13] 李大东, 孙秀霞, 孙彪, 等. 基于混合整数线性规划的无人机任务规划[J]. 飞行力学, 2010, 28(5):88-91. LI Dadong, SUN Xiuxia, SUN Biao, et al. Mission planning for UAVs based on MILP[J]. Flight dynamics, 2010, 28(5):88-91.
[14] KUWATA Y, RICHARDS A, SCHOUWENAARS T, et al. Decentralized robust receding horizon control for multi-vehicle guidance[C]//2006 American Control Conference. Minneapolis, MN, USA, 2006:2047-2052.
[15] ZHAO Jiang, ZHOU Rui. Distributed three-dimensional cooperative guidance via receding horizon control[J]. Chinese journal of aeronautics, 2016, 29(4):972-983.
[16] ZHANG Yu, WANG Chao, GU Xueqiang, et al. Cooperative trajectory planning for multiple UAVs using distributed receding horizon control and inverse dynamics optimization method[C]//Information Technology and Intelligent Transportation Systems:Volume 1, Proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems ITITS 2015. Xi’an China, 2017:39-53.
[17] 张涛, 于雷, 周中良, 等. 基于混合算法的空战机动决策[J]. 系统工程与电子技术, 2013, 35(7):1445-1450. ZHANG Tao, YU Lei, ZHOU Zhongliang, et al. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems engineering and electronics, 2013, 35(7):1445-1450.
[18] PENG Z, LI Bo, CHEN Xiaotian, et al. Online route planning for UAV based on model predictive control and particle swarm optimization algorithm[C]//201210th World Congress on Intelligent Control and Automation (WCICA). Beijing, China, 2012:397-401.
[19] 钱积新, 赵均, 徐祖华. 预测控制[M]. 北京:化学工业出版社, 2007. QIAN Jixin, ZHAO Jun, XU Zuhua. Predictive control[M]. Beijing:Chemical Industry Press, 2007.
[20] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The international journal of robotics research, 1986, 5(1):90-98.
[21] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. 3rd ed. Cambridge:MIT Press, 2009.
[22] DE BERG M, CHEONG O, VAN KREVELD M, et al. Computational Geometry:Algorithms and Applications[M]. 3rd ed. Berlin Heidelberg:Springer, 2008.

相似文献/References:

[1]莫宏伟,马靖雯.基于蚁群算法的四旋翼航迹规划[J].智能系统学报,2016,11(2):216.[doi:10.11992/tis.201509009]
 MO Hongwei,MA Jingwen.Four-rotor route planning based on the ant colony algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(04):216.[doi:10.11992/tis.201509009]

备注/Memo

备注/Memo:
收稿日期:2017-08-31。
基金项目:国家自然科学基金项目(61402537).
作者简介:王文彬,男,1991年生,硕士研究生,主要研究方向为航迹规划、机器学习;秦小林,男,1980年生,研究员,博士生导师,博士,主要研究方向为人工智能、自动推理及其应用;张力戈,男,1995年生,博士研究生,主要研究方向为无人机避障应用。
通讯作者:秦小林.E-mail:qinxl@casit.ac.cn.
更新日期/Last Update: 2018-08-25