[1]莫宏伟,马靖雯.基于蚁群算法的四旋翼航迹规划[J].智能系统学报编辑部,2016,11(2):216-225.[doi:10.11992/tis.201509009]
 MO Hongwei,MA Jingwen.Four-rotor route planning based on the ant colony algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(2):216-225.[doi:10.11992/tis.201509009]
点击复制

基于蚁群算法的四旋翼航迹规划(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年2期
页码:
216-225
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
Four-rotor route planning based on the ant colony algorithm
作者:
莫宏伟 马靖雯
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
Author(s):
MO Hongwei MA Jingwen
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
四旋翼无人机航迹规划三维环境模型蚁群算法变主方向搜索策略简化航迹策略
Keywords:
four-rotor unmanned aerial vehicleroute planningthree-dimensional environment modelant colony algorithmstrategy of converting the main direction to searchtrack simplification strategy
分类号:
TP18
DOI:
10.11992/tis.201509009
摘要:
由于四旋翼无人机(UAV)自身的特点和其复杂的飞行环境,考虑到全球定位系统(GPS)定位的精度,在环境模型方面,建立了一个基于高程图的三维环境模型,减小了碰到障碍物的概率。在规划算法方面,大部分现有的路径规划算法只能规划二维平面路径,而一般的三维规划算法,大多数运算算法复杂,需要很大的存储空间,同时难以进行全局路径规划。该蚁群算法具有分布式计算、群体智能等优势,在路径规划上有很大潜力。但在应用基本三维蚁群算法进行航迹搜索时,两平面直接相连容易使航迹直接穿过障碍物,并且搜索出的航迹节点较多,适应度值过大。针对这两个问题对算法做出了改进,提出了变主方向搜索策略和简化航迹策略。仿真实验证明改进后的蚁群算法能够很好地避开障碍物,减小了路径长度,提高了搜索效率。
Abstract:
Given a four-rotor unmanned aerial vehicle’s characteristics and complex flight environment, as well as the accuracy of the global positioning system in the environment model, the establishment of a 3D environment model based on elevation maps has reduced the probability of encountering obstacles. In terms of planning algorithms, most of the existing path planning algorithms can only plan 2D paths. Numerous 3D planning algorithms have complex computations and require much storage space. A global path is also difficult to plan. The advantages of the ant colony algorithm include distributed computing and swarm intelligence. Moreover, this algorithm has great potential in path planning. However, when the fundamental ant colony algorithm is used in a 3D track search, the two directly connected planes easily track straight through obstacles. The track then includes more nodes, and the fitness value becomes too large. The algorithm was improved to address these issues by proposing the strategy of converting the main direction to search and the simplified track strategy. Ant simulation results showed that the improved algorithm could avoid obstacles, reduce path length, and improve search efficiency.

参考文献/References:

[1] METEA M, TSAI J. Route planning for intelligent autonomous land vehicles using hierarchical terrain representation[C]//Proceedings of IEEE International Conference on Robotics and Automation. Raleigh, NC, USA, 2010: 1947-1952.
[2] 谢奉军, 张丹平, 黄蕾,等. 旋翼无人机专利申请现状与技术发展趋势分析[C]//第六届中国航空学会青年科技论坛文集. 沈阳, 2014.
[3] LIU Hongyun, JIANG Xiao, JU Hehua. Multi-goal path planning algorithm for mobile robots in grid space[C]//Proceedings of the 25th Chinese Control and Decision Conference. Guiyang, 2013: 2872-2876.
[4] GALCERAN E, CARRERAS M. A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12): 1258-1276.
[5] 李翊, 王朕, 姜鹏, 等. 四旋翼无人飞行器的航迹规划[J]. 舰船电子工程, 2014, 34(12): 58-61. LI Yi, WANG Zhen, JIANG Peng, et al. Path planning of quad-rotor[J]. Ship electronic engineering, 2013, 61(12): 1258-1276.
[6] 王玥, 张志强, 曹晓文. A*改进算法及其在航迹规划中的应用[J]. 信息系统工程, 2014 (1): 89-91.
[7] 韩超, 王赢. 一种基于改进PSO的无人机航路规划方法[J]. 舰船电子工程, 2014, 34(4): 49-53. HAN Chao, WANG Ying. Path planning of UAV based on an improved PSO algorithm[J]. Ship electronic engineering, 2014, 34(4): 49-53.
[8] 胡小兵, 黄席樾. 基于蚁群算法的三维空间机器人的路径规划[J]. 重庆大学学报, 2004, 27(8): 132-135. HU Xiaobing, HUANG Xiyue. Path planning in 3-D space for robot based on ant colony algorithm[J]. Journal of Chongqing university: natural science edition, 2004, 27(8): 132-135.
[9] 胡中华. 基于智能优化算法的无人机航迹规划若干关键技术研究[D]. 南京: 南京航空航天大学, 2011: 46-52.
[10] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotics Research, 1986, 5(1): 90-99.
[11] BAIRD C, ABRARNSON M. A comparison of several digital map-aided navigation technique[C]//The Proceedings of IEEE PLANS. Halifax, Nova Scotia, Canada, 1984: 286-293.
[12] 任世军, 洪炳熔, 黄德海. 一种基于栅格扩展的机器人路径规划方法[J]. 哈尔滨工业大学学报, 2001, 33(1): 68-72. REN Shijun,HONG Bingrong, HUANG Dehai. A robot path planning algorithm based on grid expansion[J]. Journal of Harbin institute of technology, 2001, 33(1): 68-72.
[13] 吕太之, 赵春霞. 基于改进概率栅格分解的路径规划算法[J]. 计算机工程, 2007, 33(21): 160-162, 165. LV Taizhi,ZHAO Chunxia. Path planning based on improved probabilistic cell decomposition[J]. Computer engineering, 2007, 33(21): 160-162, 165.
[14] 王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2001.
[15] WEISS M A. 数据结构与算法分析[M]. 冯舜玺, 译. 2版. 北京: 机械工业出版社, 2004.

相似文献/References:

[1]王文彬,秦小林,张力戈,等.基于滚动时域的无人机动态航迹规划[J].智能系统学报编辑部,2018,13(04):524.[doi:10.11992/tis.201708031]
 WANG Wenbin,QIN Xiaolin,ZHANG Lige,et al.Dynamic UAV trajectory planning based on receding horizon[J].CAAI Transactions on Intelligent Systems,2018,13(2):524.[doi:10.11992/tis.201708031]

备注/Memo

备注/Memo:
收稿日期:2014-4-1;改回日期:。
基金项目:黑龙江省杰出青年科学基金项目(JC1212).
作者简介:莫宏伟,男,1973年生,教授,主持完成国家自然科学基金等国家、省部级及横向课题16项,获得省科技进步奖两项,主要研究方向为自然计算理论与应用,机器人,机器学习与数据挖掘,发表论文60余篇,其中被SCI检索11篇,被EI检索40余篇。
通讯作者:莫宏伟.E-mail:honwei2004@126.com.
更新日期/Last Update: 1900-01-01