[1]郭晓峰,王耀南,周显恩,等.中国象棋机器人棋子定位与识别方法[J].智能系统学报,2018,13(04):517-523.[doi:10.11992/tis.201709020]
 GUO Xiaofeng,WANG Yaonan,ZHOU Xianen,et al.Chess-piece localization and recognition method for Chinese chess robot[J].CAAI Transactions on Intelligent Systems,2018,13(04):517-523.[doi:10.11992/tis.201709020]
点击复制

中国象棋机器人棋子定位与识别方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年04期
页码:
517-523
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Chess-piece localization and recognition method for Chinese chess robot
作者:
郭晓峰12 王耀南12 周显恩12 尹阿婷12 赵辉平12 刘磊12
1. 湖南大学 电气与信息工程学院, 湖南 长沙 410082;
2. 机器人视觉感知与控制技术国家工程实验室, 湖南 长沙 410082
Author(s):
GUO Xiaofeng12 WANG Yaonan12 ZHOU Xian’en12 YIN A’ting12 ZHAO Huiping12 LIU Lei12
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
2. National Engineering Laboratory for Robot Visual Perception and Control Technology, Changsha 410082, China
关键词:
机器视觉圆检测字符识别最小外接圆定位旋转差分识别
Keywords:
machine visioncircle detectioncharacter recognitionminimum circumcircle positioningrotating differential recognition
分类号:
TP242
DOI:
10.11992/tis.201709020
摘要:
针对中国象棋机器人系统中棋子定位与识别问题,提出了一种基于最小外接圆二次定位的定位方法和一种旋转差分识别算法。首先,采用Hough圆检测进行粗定位获取棋子区域,并对棋子进行均值二值化处理。随后,对二值化图像进行形态学处理,提取最大面积轮廓,并利用其最小外接圆实现棋子二次精准定位。最后,对二次定位修正后的图像进行旋转差分识别。以直径为15 mm的棋子为测试对象,利用我们研制的象棋机器人采集图像进行测试,结果表明,棋子的定位精度为0.5 mm,平均定位时间为2.6 ms;在保证棋子识别正确率在98%以上的情况下,单个棋子平均全流程运算时间为10 ms,完全满足现有象棋机器人需求。
Abstract:
To improve the localization and recognition of chess pieces by the Chinese chess robot system, in this paper, we propose a positioning method based on the secondary positioning of the minimum circumcircle and the use of a rotating differential recognition algorithm. First, we use the Hough circle detection method to roughly position chess pieces and then subject them to mean-value binarization. Next, we morphologically process the binarized images to extract the maximum area contours and use their minimum circumcircle values to achieve secondary precise positioning of the chess pieces. Lastly, the rotating differential recognition algorithm recognizes the secondary positioning of the corrected images. Using the chess robot we previously developed and selecting chess pieces with a diameter of 15 mm as test objects, we collected and tested the resulting images. The results show that the positioning accuracy of the chess pieces is within 0.5 mm, and the average positioning time is 2.6 ms. To ensure a 95% recognition accuracy of the chess pieces, the mean full-process operation period for a single chess piece is 10 ms, which fully meets the requirements of the current chess robot.

参考文献/References:

[1] 黄立波, 夏庭锴, 王春香, 等. 实时环境下的对弈机器人控制系统设计与分析[J]. 机械, 2004, 31(6):50-52. HUANG Libo, XIA Tingkai, WANG Chunxiang, et al. Design and analysis of the chinese-chess robot in real time environment[J]. Machinery, 2004, 31(6):50-52.
[2] 张代兵, 朱全民, 张纪阳. 一种博弈机器人的研制[J]. 仪器仪表学报, 2006, 27(6):2109-2111. ZHANG Daibing, ZHU Quanmin, ZHANG Jiyang. Design and realization of a chess robot[J]. Chinese journal of scientific instrument, 2006, 27(6):2109-2111.
[3] LEE D S, WANG S J, PANG H Y. Computer-controlled Chinese chess[C]//2010 International Symposium on Computer Communication Control and Automation. Tainan, China, 2010:389-392.
[4] 张永德, 毕津滔. 基于AVR单片机的机器人控制器设计[J]. 计算机系统应用, 2008(11):20-24. ZHANG Yongde, BI Jintao. Design of robot controller based on AVR single-chip computer[J]. Computer systems & applications, 2008(11):20-24.
[5] 庄剑毅. 基于ARM嵌入式Linux的象棋机器人控制系统研究[D]. 广州:华南理工大学, 2012. ZHUANG Jianyi. Research on the control system of Chinese chess robot based on ARM and embedded Linux[D]. Guangzhou:South China University of Technology, 2012.
[6] 刘飞, 吕新广. 药品及其包装对超高频RFID标签性能的影响[J]. 重庆邮电大学学报:自然科学版, 2017, 29(4):563-568. LIU Fei, LV Xinguang. Effects of drug and its packaging on the performance of UHF RFID tag[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2017, 29(4):563-568.
[7] 许丰磊. 象棋机器人视觉算法与智能控制软件的研究[D]. 哈尔滨:哈尔滨工业大学, 2006. XU Fenglei. The research of the vision algorithm and intelligent control software for chess robot[D]. Harbin:Harbin Institute of Technology, 2006.
[8] 肖克先. 象棋机器人嵌入式视觉系统的研究与开发[D]. 北京:北方工业大学, 2010.
[9] FANG Jianjun, XIAO Kexian. Binarized Gabor filters based illumination invariant Chinese character recognition[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China, 2009:4976-4980.
[10] 杜俊俐, 张景飞, 黄心汉. 基于视觉的象棋棋盘识别[J]. 计算机工程与应用, 2007, 43(34):220-232. DU Junli, ZHANG Jingfei, HUANG Xinhan. Chess-board recognition based on vision[J]. Computer engineering and applications, 2007, 43(34):220-232.
[11] 杜俊俐, 黄心汉. 象棋机器人视觉系统设计[J]. 电子技术应用, 2007, 33(9):133-136. DU Junli, HUANG Xinhan. Design of Chinese chess robot vision system[J]. Application of electronic technique, 2007, 33(9):133-136.
[12] 张浩鹏, 王宗义. 基于灰度方差和边缘密度的车牌定位算法[J]. 仪器仪表学报, 2011, 32(5):1095-1102. ZHANG Haopeng, WANG Zongyi. Car license plate location algorithm based on intensity variance and edge density[J]. Chinese journal of scientific instrument, 2011, 32(5):1095-1102.
[13] 费继友, 谢金路, 李花, 等. 基于字符特征约束的自适应车牌校正提取[J]. 仪器仪表学报, 2016, 37(3):632-639. FEI Jiyou, XIE Jinlu, LI Hua, et al. Adaptive license plate correction and extraction based on character feature constraint[J]. Chinese journal of scientific instrument, 2016, 37(3):632-639.
[14] 冯元华, 王思华, 柳宁, 等. 机器视觉技术在博弈智能机器人设计中的应用[J]. 计算机工程与设计, 2009, 30(14):3371-3379. FENG Yuanhua, WANG Sihua, LIU Ning, et al. Application of machine vision technology in design of chess playing intelligent robot[J]. Computer engineering and design, 2009, 30(14):3371-3379.
[15] 莫妙桃. 基于DSP的智能象棋机器人视觉图像采集与识别研究[D]. 北京:北方工业大学, 2009. MO Miaotao. Study on vision image grabbing system based on DSP and character recognition method for Chinese chess playing robot[D]. Beijing:North China University of Technology, 2009.
[16] 王殿君. 基于视觉的中国象棋棋子识别定位技术[J]. 清华大学学报; 自然科学版, 2013, 53(8):1145-1149. WANG Dianjun. Recognition and positioning technique of Chinese chess based on vision[J]. Journal of Tsinghua university:science & technology, 2013, 53(8):1145-1149.
[17] 伍锡如, 黄国明, 孙立宁. 基于深度学习的工业分拣机器人快速视觉识别与定位算法[J]. 机器人, 2016, 38(6):711-719. WU Xiru, HUANG Guoming, SUN Lining. Fast visual identification and location algorithm for industrial sorting robots based on deep learning[J]. Robot, 2016, 38(6):711-719.
[18] 赵军, 赵艳, 杨勇, 等. 基于降维的堆积降噪自动编码机的表情识别方法[J]. 重庆邮电大学学报:自然科学版, 2016, 28(6):844-848. ZHAO Jun, ZHAO Yan, YANG Yong, et al. Facial expression recognition method based on stacked denoising auto-encoders and feature reduction[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2016, 28(6):844-848.
[19] 陈海峰, 雷华, 孔燕波, 等. 基于最小二乘法的改进的随机椭圆检测算法[J]. 浙江大学学报:工科版, 2008, 42(8):1360-1364. CHEN Haifeng, LEI Hua, KONG Yanbo, et al. An improved randomized algorithm for detecting ellipses based on least square approach[J]. Journal of Zhejiang university:engineering science, 2008, 42(8):1360-1364.
[20] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3):295-298. YAN Bei, WANG Bin, LI Yuan. Optimal ellipse fitting method based on least-square principle[J]. Journal of Beijing university of aeronautics and astronautics, 2008, 34(3):295-298.
[21] 周显恩, 王耀南, 李康军, 等. 一种多次随机圆检测及拟合度评估的瓶口定位法[J]. 仪器仪表学报, 2015, 36(9):2021-2029. ZHOU Xian’en, WANG Yaonan, LI Kangjun. New bottle mouth positioning method based on multiple randomized circle detection and fitting degree evaluation[J]. Chinese journal of scientific instrument, 2015, 36(9):2021-2029.
[22] JIANG Lianyuan. Fast detection of multi-circle with randomized Hough transform[J]. Optoelectronics letters, 2009, 5(5):397-400.

相似文献/References:

[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(01):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5(04):57.
[2]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11(04):608.[doi:10.11992/tis.201512014]
[3]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(03):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12(04):279.[doi:10.11992/tis.201606037]
[4]安果维,王耀南,周显恩,等.基于显著性检测的双目测距系统[J].智能系统学报,2018,13(06):913.[doi:10.11992/tis.201712005]
 AN Guowei,WANG Yaonan,ZHOU Xianen,et al.Binocular distance measurement system based on saliency detection[J].CAAI Transactions on Intelligent Systems,2018,13(04):913.[doi:10.11992/tis.201712005]

备注/Memo

备注/Memo:
收稿日期:2017-09-11。
基金项目:国家自然科学基金项目(61733004,61573134,61433016);国家科技支撑计划项目(2015BAF13B00).
作者简介:郭晓峰,男,1993年生,硕士研究生,主要研究方向为模式识别、机器视觉和图像处理;王耀南,男,1957年生,教授,博士生导师,主要研究方向为电动汽车控制、智能控制理论与应用、智能机器人。曾获国家科技进步二等奖、中国发明创业特等奖、省部科技进步一等奖、省部科技进步二等奖。获国家专利12项。发表学术论文360余篇,其中被SCI检索38篇、EI检索109篇,出版学术专著多部;周显恩,男,1987年生,博士研究生,主要研究方向为模式识别、图像实时处理。
通讯作者:郭晓峰.E-mail:guoxiaofeng@hnu.edu.cn.
更新日期/Last Update: 2018-08-25