[1]刘胜久,李天瑞,洪西进,等.基于矩阵运算的超网络构建方法研究及特性分析[J].智能系统学报,2018,13(03):359-365.[doi:10.11992/tis.201706055]
 LIU Shengjiu,LI Tianrui,HORNG Xijin,et al.Supernetwork building based on matrix operation and property analysis[J].CAAI Transactions on Intelligent Systems,2018,13(03):359-365.[doi:10.11992/tis.201706055]
点击复制

基于矩阵运算的超网络构建方法研究及特性分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年03期
页码:
359-365
栏目:
出版日期:
2018-05-05

文章信息/Info

Title:
Supernetwork building based on matrix operation and property analysis
作者:
刘胜久12 李天瑞12 洪西进123 王红军12 珠杰124
1. 西南交通大学 信息科学与技术学院, 四川 成都 611756;
2. 西南交通大学 四川省云计算与智能技术高校重点实验室, 四川 成都 611756;
3. 台湾科技大学 资讯工程系, 台湾 台北 10607;
4. 西藏大学 计算机系, 西藏 拉萨 850000
Author(s):
LIU Shengjiu12 LI Tianrui12 HORNG Xijin123 WANG Hongjun12 ZHU Jie124
1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;
2. Sichuan Key Lab of Cloud Computing and Intelligent Technique, Southwest Jiaotong University, Chengdu 611756, China;
3. Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 10607, China;
4. Department of Computer Science, Tibetan University, Lhasa 850000, China
关键词:
矩阵运算复杂网络超网络模型构建分形维数自相似超网络随机超网络特性分析
Keywords:
matrix operationcomplex networksupernetworkmodel buildingfractal dimensionself-similarity supernetworkrandom supernetworkproperty analysis
分类号:
TP393
DOI:
10.11992/tis.201706055
摘要:
基于邻接矩阵Khatri-Rao积运算及Khatri-Rao和运算,研究了构建超网络的方法,并通过边际节点度及联合节点度来研究超网络的内在机理。将Khatri-Rao积运算迭代地应用于一个初始图序列组成超网络的邻接矩阵,得到一个分形维数不超过3的自相似超网络。若所有初始图均是连通非二分图,则得到的超网络同时具有小世界特性,其直径不超过所有初始图直径和的两倍。此外,将Khatri-Rao和运算顺次应用于多个初始图序列组成超网络的邻接矩阵,得到一个边际节点度呈一维高斯分布而联合节点度呈高维高斯分布的随机超网络。最后,给出了基于矩阵运算的超网络构建方法的若干性质。
Abstract:
We study supernetwork building based on the Khatri-Rao product operation and the Khatri-Rao sum operation on adjacency matrices. In addition, the marginal-and joint-node degrees are introduced to investigate the mechanism of a supernetwork. The Khatri-Rao product operation is iteratively applied to a simple initial network to form the adjacent supernetwork matrix and obtain a self-similarity supernetwork with fractal dimensions of no longer than 3. If all initial networks are connected with nonbipartite graphs, the obtained supernetwork has a diameter that does not exceed twice the summation of all initial networks. Furthermore, the Khatri-Rao sum operation is sequentially applied to multiple simple initial networks to form adjacency matrices of supernetwork and obtain a random supernetwork with one marginal node degree, with one-dimensional Gaussian distribution, and a joint node degree, with a high-dimensional Gaussian distribution. Finally, several properties of the proposed supernetwork building based on matrix operation are presented.

参考文献/References:

[1] ERDÖS P, RÉNYI A. On random graphs I.[J]. Publicationes mathematicae, 1959, 6:290-297
[2] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[3] NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics letters A, 1999, 293(4/5/6):341-346.
[4] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[5] BARABÁSI A L, RAVASZ E, VICSEK T. Deterministic scale-free networks[J]. Physica A:statistical mechanics and its applications, 2001, 299(3/4):559-564.
[6] COMELLAS F, SAMPELS M. Deterministic small-world networks[J]. Physica A:statistical mechanics and its applications, 2002, 309(1/2):231-235.
[7] SONG Chaoming, HAVLIN S, MAKSE H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024):392-395.
[8] 张嗣瀛. 复杂系统、复杂网络自相似结构的涌现规律[J]. 复杂系统与复杂性科学, 2006, 3(4):41-51. ZHANG Siying. The law of emergence of self-similar structures in complex systems and complex networks[J]. Complex systems and complexity science, 2006, 3(4):41-51.
[9] GALICEANU M, REIS A S, DOLGUSHEV M. Dynamics of semiflexible scale-free polymer networks[J]. The journal of chemical physics, 2014, 141(14):144902.
[10] 刘胜久, 李天瑞, 洪西进, 等. 基于矩阵运算的复杂网络构建方法[J]. 中国科学:信息科学, 2016, 46(5):610-626. LIU Shengjiu, LI Tianrui, HORNG Shijinn, et al. Complex network construction based on matrix operation[J]. Scientia sinica informationis, 2016, 46(5):610-626.
[11] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力[J]. 物理学报, 2016, 65(2):028902. XU Mingming, LU Jun’an, ZHOU Jin. Synchronizability and eigenvalues of two-layer star networks[J]. Acta physica sinica, 2016, 65(2):028902.
[12] 刘胜久, 李天瑞, 洪西进, 等. 超网络模型构建及特性分析[J]. 计算机科学与探索, 2017, 11(2):194-211. LIU Shengjiu, LI Tianrui, HORNG Shijinn, et al. Hypernetwork model and its properties[J]. Journal of frontiers of computer science & technology, 2017, 11(2):194-211.
[13] BARBÉ A M. On a class of fractal matrices (I) Excess-Matrices and their self-similar properties[J]. International journal of bifurcation and chaos, 1992, 2(4):841-860.
[14] BARBÉ A M. Artistic design with fractal matrices[J]. The visual computer, 1993, 9(5):233-238.
[15] SHALLIT J, STOLFI J. Two methods for generating fractals[J]. Computers & graphics, 1989, 13(2):185-191.
[16] KHATRI C G, RAO C R. Solutions to some functional equations and their applications to characterization of probability distributions[J]. Sankhyā:the Indian journal of statistics, series A, 1968, 30(2):167-180.
[17] TRACY D S, SINGH R P. A new matrix product and its applications in partitioned matrix differentiation[J]. Statistica neerlandica, 1972, 26(4):143-157.
[18] LIU Shuangzhe. Matrix results on the Khatri-Rao and tracy-singh products[J]. Linear algebra and its applications, 1999, 289(1/2/3):267-277.
[19] SREENIVASAN K R, MENEVEAU C. The fractal facets of turbulence[J]. Journal of fluid mechanics, 1986, 173:357-386.
[20] MASSOPUST P R. Fractal functions, fractal surfaces, and wavelets[M]. San Diego:Academic Press, 1994:135-355.

相似文献/References:

[1]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报,2008,3(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,3(03):95.
[2]夏承遗,刘忠信,陈增强,等.复杂网络上的传播动力学及其新进展[J].智能系统学报,2009,4(05):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
 XIA Cheng-yi,LIU Zhong-xin,CHEN Zeng-qiang,et al.Transmission dynamics in complex networks[J].CAAI Transactions on Intelligent Systems,2009,4(03):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
[3]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报,2011,6(01):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6(03):57.
[4]孙世温,夏承遗,王莉.基于复杂网络的软件结构度量方法综述[J].智能系统学报,2011,6(03):208.
 SUN Shiwen,XIA Chengyi,WANG Li.Survey of the measurement of software structures based on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6(03):208.
[5]赵敬,夏承遗,孙世温,等.复杂网络上同时考虑感染延迟和非均匀传播的SIR模型[J].智能系统学报,2013,8(02):128.[doi:10.3969/j.issn.1673-4785.201210027]
 ZHAO Jing,XIA Chengyi,SUN Shiwen,et al.A novel SIR model with infection delay and nonuniform transmission in complex networks[J].CAAI Transactions on Intelligent Systems,2013,8(03):128.[doi:10.3969/j.issn.1673-4785.201210027]
[6]仇建平,陈立潮,潘理虎.牵制控制下复杂网络的同步性研究[J].智能系统学报,2014,9(06):734.[doi:10.3969/j.issn.1673-4785.201311014]
 QIU Jianping,CHEN Lichao,PAN Lihu.Synchronization in complex networks via pinning control[J].CAAI Transactions on Intelligent Systems,2014,9(03):734.[doi:10.3969/j.issn.1673-4785.201311014]
[7]刘富,姜奕含,邹青宇.复杂网络结构比对算法研究进展[J].智能系统学报,2015,10(04):508.[doi:10.3969/j.issn.1673-4785.201408006]
 LIU Fu,JIANG Yihan,ZOU Qingyu.Advances in algorithms for construction alignment of complex networks research[J].CAAI Transactions on Intelligent Systems,2015,10(03):508.[doi:10.3969/j.issn.1673-4785.201408006]
[8]晁永翠,纪志坚,王耀威,等.复杂网络在路形拓扑结构下可控的充要条件[J].智能系统学报,2015,10(04):577.[doi:10.3969/j.issn.1673-4785.201411031]
 CHAO Yongcui,JI Zhijian,WANG Yaowei,et al.Necessary and sufficient conditions for the controllability of complex networks with path topology[J].CAAI Transactions on Intelligent Systems,2015,10(03):577.[doi:10.3969/j.issn.1673-4785.201411031]
[9]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报,2015,10(6):949.[doi:10.11992/tis.201507042]
 WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,10(03):949.[doi:10.11992/tis.201507042]
[10]郑文萍,张浩杰,王杰.基于稠密子图的社区发现算法[J].智能系统学报,2016,11(3):426.[doi:10.11992/tis.201603045]
 ZHENG Wenping,ZHANG Haojie,WANG Jie.Community detection algorithm based on dense subgraphs[J].CAAI Transactions on Intelligent Systems,2016,11(03):426.[doi:10.11992/tis.201603045]

备注/Memo

备注/Memo:
收稿日期:2017-06-14。
基金项目:国家自然科学基金项目(61573292,61262058).
作者简介:刘胜久,男,1988年生,博士,主要研究方向为复杂网络、自然语言处理、云计算。发表学术论文10余篇;李天瑞,男,1969年生,教授,博士生导师,主要研究方向为数据挖掘与知识发现、粒计算与粗糙集、云计算与大数据。发表学术论文240余篇,主持科技项目20余项,其中国家级项目6项。
通讯作者:李天瑞.E-mail:trli@swjtu.edu.cn.
更新日期/Last Update: 2018-06-25