[1]徐健锋,何宇凡,汤涛,等.概率粗糙集三支决策在线快速计算算法研究[J].智能系统学报,2018,13(5):741-750.[doi:10.11992/tis.201706047]
 XU Jianfeng,HE Yufan,TANG Tao,et al.Research on a fast online computing algorithm based on three-way decisions with probabilistic rough sets[J].CAAI Transactions on Intelligent Systems,2018,13(5):741-750.[doi:10.11992/tis.201706047]
点击复制

概率粗糙集三支决策在线快速计算算法研究

参考文献/References:
[1] FONG S, WONG R, VASILAKOS A V. Accelerated PSO swarm search feature selection for data stream mining big data[J]. IEEE transactions on services computing, 2016, 9(1):33-45.
[2] ZHANG Hong, LI Bo, JIANG Hongbo, et al. A framework for truthful online auctions in cloud computing with heterogeneous user demands[C]//Proceedings of 2013 IEEE INFOCOM. Turin, Italy, 2013:1510-1518.
[3] ESKANDARI S, JAVIDI M M. Online streaming feature selection using rough sets[J]. International journal of approximate reasoning, 2016, 69:35-57.
[4] CHAZELLE B, ROSENBERG B. The complexity of computing partial sums off-line[J]. International journal of computational geometry and applications, 1991, 1(1):33-45.
[5] DENG Jie, QU Zhiguo, ZHU Yongxu, et al. Towards efficient and scalable data mining using spark[C]//Proceedings of 2014 International Conference on Information and Communications Technologies. Nanjing, China, 2014:1-6.
[6] YAO Yiyu. Three-way decisions and cognitive computing [J]. Cognitive computation, 2016, 8(4):543-554.
[7] ZHOU Bing, YAO Yiyu, LUO Jigang. Cost-sensitive three-way email spam filtering[J]. Journal of intelligent information systems, 2014, 42(1):19-45.
[8] KHAN M T, AZAM N, KHALID S, et al. A three-way approach for learning rules in automatic knowledge-based topic models[J]. International journal of approximate reasoning, 2017, 82:210-226.
[9] LI Huaxiong, ZHANG Libo, ZHOU Xianzhong, et al. Cost-sensitive sequential three-way decision modeling using a deep neural network[J]. International journal of approximate reasoning, 2017, 85:68-78.
[10] QIAN Jin, DANG Chuangyin, YUE Xiaodong, et al. Attribute reduction for sequential three-way decisions under dynamic granulation[J]. International journal of approximate reasoning, 2017, 85:196-216.
[11] YU Hong, ZHANG Cong, WANG Guoyin. A tree-based incremental overlapping clustering method using the three-way decision theory[J]. Knowledge-based systems, 2016, 91:189-203.
[12] LUO Chuan, LI Tianrui, CHEN Hongmei, et al. Efficient updating of probabilistic approximations with incremental objects[J]. Knowledge-based systems, 2016, 109:71-83.
[13] NAUMAN M, AZAM N, YAO Jingtao. A three-way decision making approach to malware analysis using probabilistic rough sets[M]. New York, NY, USA:Elsevier, 2016.
[14] CHEN Yufei, YUE Xiaodong, FUJITA H, et al. Three-way decision support for diagnosis on focal liver lesions[J]. Knowledge-based systems, 2017, 127:85-99.
[15] CHEN Hongmei, LI Tianrui, LUO Chuan, et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE transactions on fuzzy systems, 2015, 23(6):1958-1970.
[16] LIANG Decui, XU Zeshui, LIU Dun. Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information[J]. Information sciences, 2017, 396:127-143.
[17] ZHANG Hongying, YANG Shuyun, MA Jianmin. Ranking interval sets based on inclusion measures and applications to three-way decisions[J]. Knowledge-based systems, 2016, 91:62-70.
[18] ZHAO Xuerong, HU Baoqing. Fuzzy probabilistic rough sets and their corresponding three-way decisions[J]. Knowledge-based systems, 2016, 91:126-142.
[19] AZAM N, ZHANG Yan, YAO Jingtao. Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets[J]. European journal of operational research, 2017, 261(2):704-714.
[20] DENG Xiaofei, YAO Yiyu. A multifaceted analysis of probabilistic three-way decisions[J]. Fundamenta informaticae, 2014, 132(3):291-313.
[21] ZHANG Yan, YAO Jingtao. Gini objective functions for three-way classifications[J]. International journal of approximate reasoning, 2017, 81:103-114.
[22] GRECO S, MATARAZZO B, ROMAN S. Rough sets theory for multicriteria decision analysis[J]. European journal of operational research, 2001, 129(1):1-47.
[23] LIU Dun, LI Tianrui, ZHANG Junbo. Incremental updating approximations in probabilistic rough sets under the variation of attributes[J]. Knowledge-based systems, 2015, 73:81-96.
[24] LI Shaoyong, LI Tianrui, LIU Dun. Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set[J]. Knowledge-based systems, 2013, 40:17-26.
[25] ZHANG Junbo, LI Tianrui, RUAN Da, et al. Neighborhood rough sets for dynamic data mining[J]. International journal of intelligent systems, 2012, 27(4):317-342.
[26] LUO Chuan, LI Tianrui, CHEN Hongmei. Dynamic maintenance of three-way decision rules[C]//Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology. Shanghai, China, 2014:801-811.
[27] PAPANDREOU G, KOKKINOS I, SAVALLE P A. Modeling local and global deformations in Deep Learning:epitomic convolution, Multiple Instance Learning, and sliding window detection[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015:390-399.
[28] YUN U, LEE G. Sliding window based weighted erasable stream pattern mining for stream data applications[J]. Future generation computer systems, 2016, 59:1-20.
相似文献/References:
[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(6):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3():492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(2):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4():112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2():40.
[4]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(6):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2():65.
[6]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[7]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[8]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[9]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(2):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10():273.[doi:10.3969/j.issn.1673-4785.201312008]
[10]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10():783.[doi:10.11992/tis.201406045]
[11]张楠,姜丽丽,岳晓冬,等.效用三支决策模型[J].智能系统学报,2016,11(4):459.[doi:10.11992/tis.201606010]
 ZHANG Nan,JIANG Lili,YUE Xiaodong,et al.Utility-based three-way decisions model[J].CAAI Transactions on Intelligent Systems,2016,11():459.[doi:10.11992/tis.201606010]
[12]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11():743.[doi:10.11992/tis.201612014]
[13]周阳阳,钱文彬,王映龙,等.面向混合数据的代价敏感三支决策边界域分类方法[J].智能系统学报,2022,17(2):411.[doi:10.11992/tis.202012048]
 ZHOU Yangyang,QIAN Wenbin,WANG Yinglong,et al.Classification method of cost-sensitive three-way decision boundary region for hybrid data[J].CAAI Transactions on Intelligent Systems,2022,17():411.[doi:10.11992/tis.202012048]

备注/Memo

收稿日期:2017-06-12。
基金项目:国家自然科学基金项目(61763031,61673301);上海市自然科学基金项目(14ZR1442600);江西省研究生创新专项资金项目(YC2016-S053).
作者简介:徐健锋,男,1973年生,副教授,博士研究生,计算机学会会员,主要研究方向为数据挖掘、粗糙集、机器学习。主持国家自然基金项目1项,参与国家自然科学基金项目2项;何宇凡,男,1994年生, 硕士研究生,主要研究方向为三支决策、粗糙集、粒计算、机器学习;汤涛,男,1993年生,硕士研究生,主要研究方向为粗糙集、粒计算、机器学习。
通讯作者:徐健锋.E-mail:jianfeng_x@ncu.edu.cn.

更新日期/Last Update: 2018-10-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134