[1]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967-973.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(6):967-973.[doi:10.11992/tis.201801025]
点击复制

基于Faster R-CNN的人体行为检测研究

参考文献/References:
[1] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France, 2015:448-456.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(1):142-158.
[3] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012:36-58. LI Hang. Statistical learning method[M]. Beijing:Tsinghua University Press, 2012:36-58.
[4] 张文达, 许悦雷, 倪嘉成, 等. 基于多尺度分块卷积神经网络的图像目标识别算法[J]. 计算机应用, 2016, 36(4):1033-1038 ZHANG Wenda, XU Yuelei, NI Jiacheng, et al. Image target recognition method based on multi-scale block convolutional neural network[J]. Journal of computer applications, 2016, 36(4):1033-1038
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[6] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015:91-99.
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:346-361.
[8] JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for automatic human action recognition[P]. USA:8345984, 2013.
[9] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1725-1732.
[10] SUN Lin, JIA Kui, CHAN T H, et al. DL-SFA:deeply-learned slow feature analysis for action recognition[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:2625-2632.
[11] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:2625-2634.
[12] GKIOXARI G, HARIHARAN B, GIRSHICK R, et al. R-CNNs for pose estimation and action detection[J]. Computer science, 2014, 12(8):1221-1229.
[13] GKIOXARI G, GIRSHICK R, MALIK J. Contextual action recognition with R*CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1080-1088.
[14] KHAN F S, VAN DE WEIJER J, ANWER R M, et al. Semantic pyramids for gender and action recognition[J]. IEEE transactions on image processing, 2014, 23(8):3633-3645.
[15] FEICHTENHOFER C, PINZ A, WILDES R P. Spatiotemporal multiplier networks for video action recognition[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:7445-7454.
[16] GKIOXARI G, GIRSHICK R, MALIK J. Actions and attributes from wholes and parts[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:2470-2478.
[17] KAR A, RAI N, SIKKA K, et al. Adascan:adaptive scan pooling in deep convolutional neural networks for human action recognition in videos[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5699-5708.
[18] FEICHTENHOFER C, PINZ A, WILDES R P. Spatiotemporal residual networks for video action recognition[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:3468-3476.
[19] HERATH S, HARANDI M, PORIKLI F. Going deeper into action recognition:a survey[J]. Image and vision computing, 2017, 60:4-21.
[20] 邓利群. 三维人体动作识别及其在交互舞蹈系统上的应用[D]. 合肥:中国科学技术大学, 2012. DENG Liqun. 3D mocap data recognition and its application on interactive dancing game[D]. Hefei:University of Science and Technology of China, 2012.
[21] 申晓霞, 张桦, 高赞, 等. 基于深度信息和RGB图像的行为识别算法[J]. 模式识别与人工智能, 2013, 26(8):722-728 SHEN Xiaoxia, ZHANG Hua, GAO Zan, et al. Behavior recognition algorithm based on depth information and RGB image[J]. Pattern recognition and artificial intelligence, 2013, 26(8):722-728
[22] 王忠民, 曹洪江, 范琳. 一种基于卷积神经网络深度学习的人体行为识别方法[J]. 计算机科学, 2016, 43(11A):56-58, 87 WANG Zhongmin, CAO Hongjiang, FAN Lin. Method on human activity recognition based on convolutional neural networks[J]. Computer science, 2016, 43(11A):56-58, 87
[23] 迟元峰, 顾敏. 基于深度学习的人体行为识别研究[J]. 工业控制计算机, 2017, 31(1):104-105 CHI Yuanfeng, GU Min. Human action recognition based on deep learning[J]. Industrial control computer, 2017, 31(1):104-105
[24] 朱煜, 赵江坤, 王逸宁, 等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报, 2016, 42(6):848-857 ZHU Yu, ZHAO Jiangkun, WANG Yi’ning, et al. A review of human action recognition based on deep learning[J]. Acta automatica sinica, 2016, 42(6):848-857
[25] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:761-769.

备注/Memo

收稿日期:2018-01-16。
基金项目:国家自然科学基金项目(60035117).
作者简介:莫宏伟,主要研究方向为人工智能、类脑计算、智能机器人。承担完成国家自然科学基金、国防预研等项目17项。中国人工智能学会自然计算与数字城市专业委员会副主任,黑龙江省生物医学工程学会理事。中国生物医学工程学会高级会员。中国计算机学会高级会员。International Journal of Swarm Intelligence Research、《电子学报》编委。IEEE Tran on Industrial Informatics 2018专刊《医疗卫生中的大数据处理》副主编。发表学术论文70余篇。出版专著6部,授权发明专利7项;汪海波,男,1990年生,硕士研究生,主要研究方向为深度学习。
通讯作者:莫宏伟.E-mail:honwei2004@126.com

更新日期/Last Update: 2018-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134