[1]熊柳,曹谢东,李杰,等.SCADA安全因素神经元的云推理机研究与仿真[J].智能系统学报,2016,11(5):688-695.[doi:10.11992/tis.201509020]
 XIONG Liu,CAO Xiedong,LI Jie,et al.Study and simulation of the SCADA security factors neuron’scloud inference engine[J].CAAI Transactions on Intelligent Systems,2016,11(5):688-695.[doi:10.11992/tis.201509020]
点击复制

SCADA安全因素神经元的云推理机研究与仿真(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
688-695
栏目:
出版日期:
2016-11-01

文章信息/Info

Title:
Study and simulation of the SCADA security factors neuron’scloud inference engine
作者:
熊柳1 曹谢东1 李杰1 杨力2 刘增良3
1. 西南石油大学 电气信息学院, 四川 成都 610500;
2. 西南石油大学 计算机科学学院, 四川 成都 610500;
3. 中国人民解放军国防大学 信息作战研究所, 北京 100091
Author(s):
XIONG Liu1 CAO Xiedong1 LI Jie1 YANG Li2 LIU Zengliang3
1. School of Electrical Information Engineering, Southwest Petroleum University, Chengdu 610500, China;
2. School of Computer Science, Southwest Petroleum University, Chengdu 610500, China;
3. Institute of Information Operation, University of National Defense, Beijing 100091, China
关键词:
SCADA信息安全因素空间因素神经元云模型:MATLAB仿真
Keywords:
SCADA information securityfactor spacefactor neuroncloud modelMATLAB simulation
分类号:
TP18
DOI:
10.11992/tis.201509020
摘要:
为了解决SCADA系统信息安全的问题,本文提出了一种基于因素神经网络的主动防御方法。将SCADA系统信息安全的影响因素映射到因素空间坐标中,然后利用知识因素的因素神经元表示方法,通过云模型推理机实现了语言值表示的模糊概念到定量数据的转换,并通过云模型多规则多条件发生器进行规则推理,最后根据得到的期望值又可以转换为定性语言值,这样就实现了对未知恶意程序行为操作可能性的预测。本文着重于利用基于云模型的多条件多规则发生器实现推理,通过MATLAB进行算法设计和仿真,为油气SCADA系统信息安全防御的解决方法提供了一种思路。
Abstract:
Over recent years, with the amount of incidents involving industrial control information systems, the safety of these system has been given increased importance across the Globe, and several technical measures have been implented to improve this. This paper proposed an active defense method based on a factor neural network in reference to SCADA information security. The different aspects of SCADA information security were mapped to factor coordinates, and the factor neuron method for knowledge factors was then used to transform this from a fuzzy concept (represented by language) to quantitative data through a cloud inference engine. Inference was then conducted through generated multi conditions and multi rules based on a cloud model, so that it could then be transformed into a qualitative language (e.g.‘more likely’based on Ex) to be able to forecast the consequences of unknown malicious programs. This paper focus on using a generator with multiple conditions and rules based on a cloud model to achieve inference, thus providing an idea of the oil and gas SCADA information security’s defense response using algorithmic design and MATLAB-based simulations.

参考文献/References:

[1] 刘增良. 因素神经网络理论及其应用[M]. 贵阳:贵州科技出版社, 1994. LIU Zengliang. Factor neural networks and its application[M]. Guiyang:Guizhou Science and Technology Publishing House, 1994.
[2] YANG Li, GAO Xiedong, LI Jie, et al. Research on FNN-based security defence architecture model of scada network[C]//Proceedings of the 2nd International Conference on Cloud Computing and Intelligence Systems. Hangzhou, China, 2012.
[3] QIN Yong, CAO Xiedong, LIANG Peng, et al. Research on the analytic factor neuron model based on cloud generator and its application in oil & gas scada security defense[C]//Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems. Shenzhen, China, 2014:5.
[4] 刘增良. 知识的因素表示[C]//中国科学技术协会首届青年学术年会论文集(工科分册·上册). 北京, 1992:5. LIU Zengliang. The factor representation of knowledge[C]//Proceedings of the 1st National Association of Science and Technology of Youth (Engineering. First). Beijing, 1992:5.
[5] 杨朝晖, 李德毅. 二维云模型及其在预测中的应用[J]. 计算机学报, 1998, 21(11):961-969. YANG Zhaohui, LI Deyi. Planar model and its application in prediction[J]. Chinese journal of computers, 1998, 21(11):961-969.
[6] 汪培庄. 因素空间与概念描述[J]. 软件学报, 1992, 3(2):30-40. WANG Peizhuang. Factor space and description of concepts[J]. Journal of software, 1992, 3(2):30-40.
[7] 王树良. 基于数据场与云模型的空间数据挖掘和知识发现[D]. 武汉:武汉大学, 2002. WANG Shuliang. Data field and cloud model based spatial data mining and knowledge discovery[D]. Wuhan:Wuhan University, 2002.
[8] 曹谢东. 模糊信息处理及应用[M]. 北京:科学出版社, 2003:103-104. CAO Xiedong. Fuzzy information processing and application[M]. Beijing:Science Press, 2003:103-104.
[9] YANG Li, CAO Xiedong, LI Jie, et al. A new formal description model of network attacking and defence knowledge of oil and gas field SCADA system[M]//WANG Hua, ZOU Lei, HUANG Guangyan, et al. Web Technologies and Applications. Berlin Heidelberg:Springer, 2012.
[10] YANG Li. A new factor state space model for SCADA network attack and defense[J]. International journal of security and its applications, 2014, 8(6):303-314.
[11] 王盼卿, 李晓辉. 一种基于知识因素表示理论的装备信息分类描述方法[J]. 国防科技大学学报, 2011, 35(5):150-155. WANG Panqin, LI Xiaohui. A description method on classification of equipment information based on knowledge factor expression theory[J]. Journal of national university of defense technology, 2011, 35(5):150-155.
[12] 刘增良, 刘有才. 因素神经网络理论及实现策略研究[M]. 北京:北京师范大学出版社, 1992. LIU Zengliang, LIU Youcai. Research on the theory of factor neural network and its realization[M]. Beijing:Research on the Theory of Factor Neural Network and Its Realization, 1992.
[13] 付斌, 李道国, 王慕快. 云模型研究的回顾与展望[J]. 计算机应用研究, 2011, 28(2):420-426.FU Bin, LI Daoguo, WANG Mukuai. Review and prospect on research of cloud model[J]. Application research of computers, 2011, 28(2):420-426.
[14] 张飞舟, 范跃祖, 沈程智, 等. 利用云模型实现智能控制倒立摆[J]. 控制理论与应用, 2000, 17(4):519-523.ZHANG Feizhou, FAN Yuezu, SHEN Chengzhi, et al. Intelligent control inverted pendulum with cloud models[J]. Control theory and application, 2000, 17(4):519-523.
[15] 李德毅, 杜鹢. 不确定性人工智能[M]. 北京:国防工业出版社, 2005:7. LI Deyi, DU Yi. Artificial intelligence with uncertainty[M]. Beijing:National Defend Industry Press, 2005:7.

相似文献/References:

[1]曲国华,李春华,张强.因素空间中属性约简的区分函数[J].智能系统学报,2017,12(06):889.[doi:10.11992/tis.201609014]
 QU Guohua,LI Chunhua,ZHANG Qiang.Attribute reduction and discernibility function in factor space[J].CAAI Transactions on Intelligent Systems,2017,12(5):889.[doi:10.11992/tis.201609014]
[2]刘劲威,曹谢东,徐诗艺,等.云模型油气SCADA系统信息安全评价研究[J].智能系统学报,2018,13(02):296.[doi:10.11992/tis.201609001]
 LIU Jinwei,CAO Xiedong,XU Shiyi,et al.Research on information security evaluation of oil and gas SCADA system in cloud model[J].CAAI Transactions on Intelligent Systems,2018,13(5):296.[doi:10.11992/tis.201609001]
[3]包研科,汪培庄,郭嗣琮.因素空间的结构与对偶回旋定理[J].智能系统学报,2018,13(04):656.[doi:10.11992/tis.201706057]
 BAO Yanke,WANG Peizhuang,GUO Sicong.Structure of factor space and the dual convolution theorem[J].CAAI Transactions on Intelligent Systems,2018,13(5):656.[doi:10.11992/tis.201706057]
[4]汪培庄,周红军,何华灿,等.因素表示的信息空间与广义概率逻辑[J].智能系统学报,2019,14(05):843.[doi:10.11992/tis.201810021]
 WANG Peizhuang,ZHOU Hongjun,HE Huacan,et al.Factorial information space and generalized probability logic[J].CAAI Transactions on Intelligent Systems,2019,14(5):843.[doi:10.11992/tis.201810021]
[5]崔铁军,汪培庄.空间故障树与因素空间融合的智能可靠性分析方法[J].智能系统学报,2019,14(05):853.[doi:10.11992/tis.201807022]
 CUI Tiejun,WANG Peizhuang.Intelligent reliability analysis method based on space fault tree and factor space[J].CAAI Transactions on Intelligent Systems,2019,14(5):853.[doi:10.11992/tis.201807022]
[6]崔铁军,李莎莎.安全科学中的故障信息转换定律[J].智能系统学报,2020,15(2):360.[doi:10.11992/tis.201811004]
 CUI Tiejun,LI Shasha.Conversion law of fault information in safety science[J].CAAI Transactions on Intelligent Systems,2020,15(5):360.[doi:10.11992/tis.201811004]

备注/Memo

备注/Memo:
收稿日期:2015-09-17。
基金项目:国家自然科学基金项目(61175122);四川省科技支撑计划(2015GZ0345);四川省教育厅重点项目(15ZA0049).
作者简介:熊柳,男,1991年生,硕士研究生,主要研究方向为模式识别与智能控制,参加国家自然基金项目1项;曹谢东,男,1954年生,教授,主要研究方向为人工智能、工业控制信息系统安全、智能测控等。主持国家自然科学基金项目,承担国家863、国家重大科技攻关项目和省部级项目多项,获四川省科技进步二等奖1项、三等奖2项,专著3部。
通讯作者:熊柳.E-mail:beartree1991@163.com
更新日期/Last Update: 1900-01-01