[1]蒲凌杰,曾繁慧,汪培庄.因素空间理论下基点分类算法研究[J].智能系统学报,2020,15(3):528-536.[doi:10.11992/tis.201903031]
 PU Lingjie,ZENG Fanhui,WANG Peizhuang.Base point classification algorithm based on factor space theory[J].CAAI Transactions on Intelligent Systems,2020,15(3):528-536.[doi:10.11992/tis.201903031]
点击复制

因素空间理论下基点分类算法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
528-536
栏目:
学术论文—人工智能基础
出版日期:
2020-09-05

文章信息/Info

Title:
Base point classification algorithm based on factor space theory
作者:
蒲凌杰12 曾繁慧12 汪培庄12
1. 辽宁工程技术大学 理学院,辽宁 阜新 123000;
2. 辽宁工程技术大学 智能工程与数学研究院,辽宁 阜新 123000
Author(s):
PU Lingjie12 ZENG Fanhui12 WANG Peizhuang12
1. College of Science, Liaoning Technical University, Fuxin 123000, China;
2. College of Intelligent Engineering and Mathematics, Liaoning Technical University, Fuxin 123000, China
关键词:
因素空间背景基背景基提取λ-背景基基点分类算法识别新类别数据分类背景分布背景关系
Keywords:
factor spacebackground basebackground base extractionλ-background basebase point classification algorithmidentify new classesdata classificationbackground distributionbackground relationship
分类号:
TP18
DOI:
10.11992/tis.201903031
摘要:
目前,基于因素空间理论的背景基提取算法计算过程复杂,初始化必须依赖各因素极值,基点数量提取冗余等原因,未能在应用中取得很好效果。为此,结合内点判别法和知识可继承、可扩展的思想,提出一种计算简单、初始化独立、基点数量小的改进的背景基提取算法。然后,利用改进的背景基提取算法构造出一种全新的数据分类算法-基点分类算法,基点分类算法以提取每一类样本的背景基为预测模型,再通过新定义的λ-背景基,优化预测模型。数值实验表明:基点分类算法原理简单、构造难度小、分类模型泛化能力强,预测能力准确率高,同时严格的模型限定区域又能为识别新类别提供新方法。
Abstract:
At present, the background-based extraction algorithm based on factor space theory has not achieved good results when used in applications. Reasons for its inefficiency are the calculation process is complicated, initialization depends on the extreme values of each factor, and redundancy of the number of base points extracted. Therefore, combining the inner point judgment method and a novel idea, an improved background-based extraction algorithm with simple calculation, independent initialization, and a few number of base points is proposed. Using the improved background-based extraction algorithm, a new data classification algorithm, i.e., base point classification algorithm, is constructed. The algorithm extracts the background base of each type of sample as the prediction model and optimizes the prediction model through the newly defined λ-background base. Finally, numerical experiments show that the base point classification algorithm is simple in principle, easy in construction, strong in generalizing the ability of classification model, and high in accuracy of prediction ability. Moreover, strict-utility model can provide new methods for identifying new classes.

参考文献/References:

[1] 钟义信. 机制主义人工智能理论-一种通用的人工智能理论[J]. 智能系统学报, 2018, 13(1): 2-18
ZHONG Yixin. Mechanism-based artificial intelligence theory: a universal theory of artificial intelligence[J]. CAAI transactions on intelligent systems, 2018, 13(1): 2-18
[2] 何华灿. 泛逻辑学理论-机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018, 13(1): 19-36
HE Huacan. Universal logic theory: logical foundation of mechanism-based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1): 19-36
[3] 汪培庄. 因素空间理论—机制主义人工智能理论的数学基础[J]. 智能系统学报, 2018, 13(1): 37-54
WANG Peizhuang. Factor space-mathematical basis of mechanism based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1): 37-54
[4] 汪培庄. 因素空间与因素库[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(10): 1297-1304
WANG Peizhuang. Factor spaces and factor data-bases[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(10): 1297-1304
[5] 汪培庄. 因素空间与数据科学[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(2): 273-280
WANG Peizhuang. Factor spaces and data science[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(2): 273-280
[6] WANG Peizhuang, LIU Zengliang, SHI Yong, et al. Factor space, the theoretical base of data science[J]. Annals of data science, 2014, 1(2): 233-251.
[7] WANG Peizhuang, OUYANG He, ZHONG Yixin, et al. Cognition math based on factor space[J]. Annals of data science, 2016, 3(3): 281-303.
[8] 钟义信. 高等人工智能原理: 观念·方法·模型·理论[M]. 北京: 科学出版社, 2014.
[9] 钟义信. 信息科学与技术导论[M]. 3版. 北京: 北京邮电大学出版社, 2015.
[10] 曲国华, 曾繁慧, 刘增良, 等. 因素空间中的背景分布与模糊背景关系[J]. 模糊系统与数学, 2017, 31(6): 66-73
QU Guohua, ZENG Fanhui, LIU Zengliang, et al. Background distribution and fuzzy background relation in factor spaces[J]. Fuzzy systems and mathematics, 2017, 31(6): 66-73
[11] 曾繁慧, 郑莉. 因素分析法的样本培育[J]. 辽宁工程技术大学学报(自然科学版), 2017, 36(3): 320-323
ZENG Fanhui, ZHENG Li. Sample cultivation in factorial analysis[J]. Journal of Liaoning Technical University (Natural Science), 2017, 36(3): 320-323
[12] 吕金辉, 刘海涛, 郭芳芳, 等. 因素空间背景基的信息压缩算法[J]. 模糊系统与数学, 2017, 31(6): 82-86
LV Jinhui, LIU Haitao, GUO Fangfang, et al. The algorithm of extraction of background bases[J]. Fuzzy systems and mathematics, 2017, 31(6): 82-86
[13] 李建中, 李英姝. 大数据计算的复杂性理论与算法研究进展[J]. 中国科学: 信息科学, 2016, 46(9): 1255-1275
LI Jianzhong, LI Yingshu. Research progress in the complexity theory and algorithms of big-data computation[J]. SCIENTIA SINICA informationis, 2016, 46(9): 1255-1275
[14] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341-356.

相似文献/References:

[1]熊柳,曹谢东,李杰,等.SCADA安全因素神经元的云推理机研究与仿真[J].智能系统学报,2016,11(5):688.[doi:10.11992/tis.201509020]
 XIONG Liu,CAO Xiedong,LI Jie,et al.Study and simulation of the SCADA security factors neuron’scloud inference engine[J].CAAI Transactions on Intelligent Systems,2016,11(3):688.[doi:10.11992/tis.201509020]
[2]曲国华,李春华,张强.因素空间中属性约简的区分函数[J].智能系统学报,2017,12(06):889.[doi:10.11992/tis.201609014]
 QU Guohua,LI Chunhua,ZHANG Qiang.Attribute reduction and discernibility function in factor space[J].CAAI Transactions on Intelligent Systems,2017,12(3):889.[doi:10.11992/tis.201609014]
[3]刘劲威,曹谢东,徐诗艺,等.云模型油气SCADA系统信息安全评价研究[J].智能系统学报,2018,13(02):296.[doi:10.11992/tis.201609001]
 LIU Jinwei,CAO Xiedong,XU Shiyi,et al.Research on information security evaluation of oil and gas SCADA system in cloud model[J].CAAI Transactions on Intelligent Systems,2018,13(3):296.[doi:10.11992/tis.201609001]
[4]包研科,汪培庄,郭嗣琮.因素空间的结构与对偶回旋定理[J].智能系统学报,2018,13(04):656.[doi:10.11992/tis.201706057]
 BAO Yanke,WANG Peizhuang,GUO Sicong.Structure of factor space and the dual convolution theorem[J].CAAI Transactions on Intelligent Systems,2018,13(3):656.[doi:10.11992/tis.201706057]
[5]汪培庄,周红军,何华灿,等.因素表示的信息空间与广义概率逻辑[J].智能系统学报,2019,14(05):843.[doi:10.11992/tis.201810021]
 WANG Peizhuang,ZHOU Hongjun,HE Huacan,et al.Factorial information space and generalized probability logic[J].CAAI Transactions on Intelligent Systems,2019,14(3):843.[doi:10.11992/tis.201810021]
[6]崔铁军,汪培庄.空间故障树与因素空间融合的智能可靠性分析方法[J].智能系统学报,2019,14(05):853.[doi:10.11992/tis.201807022]
 CUI Tiejun,WANG Peizhuang.Intelligent reliability analysis method based on space fault tree and factor space[J].CAAI Transactions on Intelligent Systems,2019,14(3):853.[doi:10.11992/tis.201807022]
[7]崔铁军,李莎莎.安全科学中的故障信息转换定律[J].智能系统学报,2020,15(2):360.[doi:10.11992/tis.201811004]
 CUI Tiejun,LI Shasha.Conversion law of fault information in safety science[J].CAAI Transactions on Intelligent Systems,2020,15(3):360.[doi:10.11992/tis.201811004]

备注/Memo

备注/Memo:
收稿日期:2019-03-23。
基金项目:国家自然科学基金委主任基金项目(61350003);辽宁省教育厅科学技术研究经费项目(LJ2019JL019)
作者简介:蒲凌杰,硕士研究生,主要研究方向为因素空间理论、数据挖掘、智能决策;曾繁慧,教授,主要研究方向为基于因素空间的数据挖掘理论与应用、模糊结构元理论与应用。参与完成中国工程院重点项目、国家自然科学基金项目、辽宁省基金项目、教育部高校博士学科点专项科研基金项目等。获多项省、市级奖励。发表学术论文 50余篇; 汪培庄,教授,博士生导师,主要研究方向为模糊数学及其在人工智能中的应用,近期主要致力于因素空间在人工智能和数据科学中的应用研究。提出和创立了模糊集的随机落影表示、真值流推理和因素空间等数学理论,多次获得国家级和部委级奖励, 获得一次国际奖。发表学术论文200余篇,出版学术著作4部。
通讯作者:蒲凌杰.E-mail:1901676469@qq.com
更新日期/Last Update: 1900-01-01