[1]李自强,纪志坚,晁永翠,等.多信号输入下多智能体系统的图可控性分类[J].智能系统学报,2016,11(5):680-687.[doi:10.11992/tis.201601017]
 LI Ziqiang,JI Zhijian,CHAO Yongcui,et al.Graph controllability classes of networked multi-agentsystems with multi-signal inputs[J].CAAI Transactions on Intelligent Systems,2016,11(5):680-687.[doi:10.11992/tis.201601017]
点击复制

多信号输入下多智能体系统的图可控性分类(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
680-687
栏目:
出版日期:
2016-11-01

文章信息/Info

Title:
Graph controllability classes of networked multi-agentsystems with multi-signal inputs
作者:
李自强 纪志坚 晁永翠 董洁
青岛大学 自动化工程学院, 山东 青岛 266071
Author(s):
LI Ziqiang JI Zhijian CHAO Yongcui DONG Jie
School of Automation Engineering, Qingdao University, Qingdao 266071, China
关键词:
多信号输入系统图可控性分类秩判据和PBH判据拉普拉斯矩阵可控性
Keywords:
multi-signal input systemsgraph controllability classesrank criterion and PBH criterionLaplacian matrixcontrollability
分类号:
TP273
DOI:
10.11992/tis.201601017
摘要:
在多信号输入情形下,对多智能体系统的图可控性分类进行了分析,构建了新的基于多信号输入下的系统模型。进而利用秩判据和PBH判据,在新的模型下得到系统与可控性的关系,新的模型更方便地表现多智能体系统的一般性。此外,在拉普拉斯矩阵下,对多智能体系统与可控性的关系做了详细的分析与研究,特别是在拉普拉斯矩阵的特征值与系统能控性的关系方面进行了分析。解决了多信号输入下可控性分类的问题,并提高了研究可控性的准确性。而且,在已有结论的基础上对多智能体系统可控性的内容进行了完善。
Abstract:
In this paper, we analyze graph controllability classes in networked multi-agent systems with multisignal inputs and construct a new system model. To determine the relationship between controllability and networked multi-agent systems, we used a controllability rank criterion and the Popov-Belevitch-Hautus criterion in our proposed model, which is more convenient and more general in its application. In addition, we analyzed in detail the relationship between networked multi-agent systems and controllability, especially, between Laplacian eigenvalue and controllability. Based on our results, we conclude that we have solved the controllable classification problem associated with multisignal input, improved research accuracy with respect to controllability, and improved the controllability of networked multi-agent systems.

参考文献/References:

[1] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE transactions on automatic control, 2004, 49(9):1520-1533.
[2] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE transactions on automatic control, 2003, 48(6):988-1001.
[3] JI Z J, LIN H, LEE T H. Controllability of multi-agent systems with switching topology[C]//Proceeding of the 2008 IEEE Conference on Robotics, Automation and Mechatronics. Chengdu:IEEE, 2008:421-426.
[4] 刘菲, 纪志坚. 时滞二阶离散多智能体系统的可控性[J]. 系统科学与数学, 2015(3):298-307. LIU Fei, JI Zhijian. Controllability of second-order discrete-time multi-agent systems with time-delay[J]. Journal of systems science and mathematical sciences, 2015(3):298-307.
[5] 董洁, 纪志坚, 王晓晓. 多智能体网络系统的能控性代数条件[J]. 智能系统学报, 2015, 10(5):747-754. DONG Jie, JI Zhijian, WANG Xiaoxiao. Algebraic conditions for the controllability of multi-agent systems[J]. CAAI transactions on intelligent systems, 2015, 10(5):747-754.
[6] 晁永翠, 纪志坚, 王耀威, 等. 复杂网络在路形拓扑结构下可控的充要条件[J]. 智能系统学报, 2015, 10(4):577-582.CHAO Yongcui, JI Zhijian, WANG Yaowei, et al. Necessary and sufficient conditions for the controllability of complex networks with path topology[J]. CAAI transactions on intelligent systems, 2015, 10(4):577-582.
[7] 王晓晓, 纪志坚. 广播信号下非一致多智能体系统的能控性[J]. 智能系统学报, 2014, 9(4):401-406. WANG Xioaxiao, JI Zhijian. Controllability of non-identical multi-agent systems under a broadcasting control signal[J]. CAAI transactions on intelligent systems, 2014, 9(4):401-406.
[8] JI M, EGERSTEDT M. A graph-theoretic characterization of controllability for multi-agent systems[C]//Proceeding of the American Control Conference, 2007. New York:IEEE, 2007:4588-4593.
[9] JIANG Fangcui, WANG Long, XIE Guangming, et al. On the controllability of multiple dynamic agents with fixed topology[C]//Proceeding of the American Control Conference, 2009. St. Louis, Missouri, USA:IEEE, 2009:5665-5670.
[10] JI Zhijian, WANG Zidong, LIN Hai, et al. Controllability of multi-agent systems with time-delay in state and switching topology[J]. International journal of control, 2010, 83(2):371-386.
[11] LIU Bo, CHU Tianguang, WANG Long, et al. Controllability of a leader-follower dynamic network with switching topology[J]. IEEE transactions on automatic control, 2008, 53(4):1009-1013.
[12] RAHMANI A, JI Meng, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM journal on control and optimization, 2009, 48(1):162-186.
[13] MARTINI S, EGERSTEDT M, BICCHI A. Controllability analysis of multi-agent systems using relaxed equitable partitions[J]. International journal of systems, control and communications, 2010, 2(1/2/3):100-121.
[14] CHAPMAN A, MESBAHI M. On symmetry and controllability of multi-agent systems[C]//Proceeding of the 2014 IEEE 53rd Annual Conference on Decision and Control. Los Angeles, CA, USA:IEEE, 2014:625-630.
[15] 刘金琨, 尔联洁. 多智能体技术应用综述[J]. 控制与决策, 2001, 16(2):133-140, 180. LIU Jinkun, ER Lianjie. Overview of application of multiagent technology[J]. Control and decision, 2001, 16(2):133-140, 180.
[16] 朱战霞, 郑莉莉. 无人机编队飞行控制器设计[J]. 飞行力学, 2007, 25(4):22-24. ZHU Zhanxia, ZHENG Lili. The controller design of UAV formation flight[J]. Flight dynamics, 2007, 25(4):22-24.
[17] LANE D M, MCFADZEAN A G. Distributed problem solving and real-time mechanisms in robot architectures[J]. Engineering applications of artificial intelligence, 1994, 7(2):105-117.
[18] AGUILAR C O, GHARESIFARD B. Graph controllability classes for the laplacian leader-follower dynamics[J]. IEEE transactions on automatic control, 2014, 60(6):1611-1623.
[19] TANNER H G. On the controllability of nearest neighbor interconnections[C]//Proceeding of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas:IEEE, 2004:2467-2472.
[20] HONG Yiguang, GAO Lixin, CHENG Daizhan, et al. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection[J]. IEEE transactions on automatic control, 2007, 52(5):943-948.
[21] MOREAU L. Stability of multiagent systems with time-dependent communication links[J]. IEEE transactions on automatic control, 2005, 50(2):169-182.
[22] OGREN P, EGERSTEDT M, HU Xiaoming. A control Lyapunov function approach to multiagent coordination[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida, USA:IEEE, 2001:1150-1155.
[23] BIGGS N. Algebraic graph theory[M]. 2nd ed. Cambridge:Cambridge University Press, 1993.
[24] 王树禾. 图论[M]. 北京:科学出版社, 2004.
[25] CHARTRAND G, ZHANG Ping. 图论导引[M]. 范益政, 译. 北京:人民邮电出版社, 2007:1-17. CHARTRAND G, ZHANG Ping. Introduction to graph theory[M]. FAN Yizheng, trans. Beijing:The People’s Posts and Telecommunications Press, 2007:1-17.

备注/Memo

备注/Memo:
收稿日期:2016-01-08。
基金项目:国家自然科学基金项目(61374062);山东省杰出青年科学基金项目(JQ201419).
作者简介:李自强,男,1991年生,硕士研究生,主要研究方向为多智能体系统;纪志坚,男,1973年生,博士,教授,博士生导师,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统等。曾主持国家自然科学基金3项、山东省杰出青年科学基金项目1项。山东省杰出青年基金获得者,发表学术论文70余篇,其中被SCI检索23篇,EI检索50余篇;晁永翠,女,1990年生,硕士研究生,主要研究方向为复杂网络的可控性。
通讯作者:纪志坚.E-mail:jizhijian@pku.org.cn
更新日期/Last Update: 1900-01-01