[1]王辉,车超,于立君,等.鳍-水舱综合减摇混沌系统控制方法研究[J].智能系统学报,2017,12(03):318-324.[doi:10.11992/tis.201607012]
 WANG Hui,CHE Chao,YU Lijun,et al.Control method for a fin/tank integrated stabilization chaotic system[J].CAAI Transactions on Intelligent Systems,2017,12(03):318-324.[doi:10.11992/tis.201607012]
点击复制

鳍-水舱综合减摇混沌系统控制方法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年03期
页码:
318-324
栏目:
出版日期:
2017-06-25

文章信息/Info

Title:
Control method for a fin/tank integrated stabilization chaotic system
作者:
王辉 车超 于立君 刘少英 游江
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Hui CHE Chao YU Lijun LIU Shaoying YOU Jiang
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
综合减摇系统参数优化非线性反馈混沌搜索算法蚁群算法吸引子相同船舶横摇
Keywords:
integrated stabilizationparameter optimizationnonlinear feedbackchaos search algorithmcolony algorithmattractor phase diagramship roll
分类号:
TP11
DOI:
10.11992/tis.201607012
摘要:
针对船舶减摇问题,对综合减摇系统动力学模型方程进行分析,可知该系统为混沌系统。利用相图与Lyapunov指数谱分析方法,验证该系统在特定条件下的混沌行为,通过选取合理受控参数,利用非线性反馈控制方法使系统的混沌行为得到有效控制。该方法使系统混沌动力学行为得到了改善,并保留了系统原有的动力学特性。将混沌搜索算法与蚁群算法相结合,实现对PID控制参数寻优,使混沌蚁群算法不仅具备较强全局优化能力,与此同时,系统的收敛速度得到提高,该控制系统的性能得到增强。
Abstract:
Based on the ship roll problem, the dynamic model equations of an integrated stabilization system were analyzed and proved this to be a chaotic system.The analytical method of phase diagrams and Lyapunov indexes were used to verify the chaotic motion of the system under certain conditions, then a nonlinear feedback control method was used to control this chaotic motion by choosing reasonable control parameters. This method reduced the chaotic motion of the system without destroying the original dynamic characteristics.The chaos search algorithm was combined with an ant colony algorithm to search the best parameters for PID. Therefore, the chaos ant colony optimization algorithm not only had strong global optimization ability but also accelerated the convergence speed. As a result, the performance of the control system was significantly improved.

参考文献/References:

[1] 李天伟, 刘晓光, 彭伟骅, 等. 船舶航向保持中的混沌运动控制[J]. 计算机应用, 2013, 33(1): 234-238. LI Tianwei, LIU Xiaoguang, PENG Weihua, et al. Chaotic ship maneuvering control in course-keeping[J]. Journal of computer applications, 2013, 33(1): 234-238.
[2] 于立君, 陈佳, 刘繁明, 等. 改进粒子群算法的PID神经网络解耦控制[J]. 智能系统学报, 2015, 10(5): 699-704. YU Lijun, CHEN Jia, LIU Fanming, et al. An improved particle swarm optimization for PID neural network decoupling control[J]. CAAI transactions on intelligent systems, 2015, 10(5): 699-704.
[3] YU Lijun, LIU Shaoying, LIU Fanming, et al. Energy optimization of the fin/rudder roll stabilization system based on the multi-objective genetic algorithm(MOGA) [J]. Journal of marine science and application, 2015, 14(2): 202-207.
[4] 刘胜, 孔琳. 基于工控机的船舶航向/横摇控制信息处理系统[J]. 智能系统学报, 2011, 6(3): 268-271. LIU Sheng, KONG Lin. An information processing system of ship course/roll control based on an industrial computer[J]. CAAI transactions on intelligent systems, 2011, 6(3): 268-271.
[5] FAIEGHI M R, NADERI M, JALALI A A. Design of fractional-order PID for ship roll motion control using chaos embedded PSO algorithm[C]//Proceedings of 2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA). Shiraz: IEEE, 2011: 606-610.
[6] 黄谦, 李天伟, 王书晓, 等. 舰船混沌运动的单输入自适应变结构控制[J]. 动力学与控制学报, 2015, 13(6): 443-448. HUANG Qian, LI Tianwei, WANG Shuxiao, et al. Chaos control of ship steering via single input adaptive sliding mode control method[J]. Journal of dynamics and control, 2015, 13(6): 443-448.
[7] 胡开业, 丁勇, 王宏伟, 等. 船舶在随机横浪中的全局稳定性[J]. 哈尔滨工程大学学报, 2011, 32(6): 719-723. HU Kaiye, DING Yong, WANG Hongwei, et al. Global stability of ship motion in stochastic beam seas[J]. Journal of Harbin engineering university, 2011, 32(6): 719-723.
[8] 金鸿章, 赵卫平, 綦志刚, 等. 大型船舶综合减摇系统的研究[J]. 中国造船, 2005, 46(1): 29-35. JIN Hongzhang, ZHAO Weiping, QI Zhigang, et al. Research on integrated roll stabilization system for large ships[J]. Shipbuilding of China, 2005, 46(1): 29-35.
[9] 于立君, 孙经广, 刘繁明, 等. 广义预测算法在综合减摇系统控制器设计中的应用[J]. 船舶工程, 2013, 35(6): 76-79. YU Lijun, SUN Jingguang, LIU Fanming, et al. Application of generalized prediction algorithm in designing integrated stabilization system controller[J]. Ship engineering, 2013, 35(6): 76-79.
[10] MATOUK A E. Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system[J]. Physics letters A, 2009, 373(25): 2166-2173.
[11] LI C W, DU Yichun, WU Jianxing, et al. Synchronizing chaotification with support vector machine and wolf pack search algorithm for estimation of peripheral vascular occlusion in diabetes mellitus[J]. Biomedical signal processing and control, 2014, 9: 45-55.
[12] WALDNER F, KLAGES R. Symmetric jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited[J]. Chaos, solitons and fractals, 2012, 45(3): 325-340.
[13] BARRIO R, MARTÍNEZ M A, SERRANO S, et al. When chaos meets hyperchaos: 4D Rössler model[J]. Physics letters A, 2015, 379(38): 2300-2305.
[14] WANG Junwei, XIONG Xiaohua, ZHAO Meichun, et al. Fuzzy stability and synchronization of hyperchaos systems[J]. Chaos, solitons and fractals, 2008, 35(5): 922-930.
[15] KAKMENI F M M, BOWONG S, TCHAWOUA C, et al. Strange attractors and chaos control in a Duffing-Van der Pol oscillator with two external periodic forces[J]. Journal of sound and vibration, 2004, 277(4/5): 783-799.
[16] 张文娟, 俞建宁, 张建刚, 等. 利用非线性反馈控制一类振动系统的振动[J]. 重庆理工大学学报: 自然科学, 2013, 27(1): 27-31. ZHANG Wenjuan, YU Jianning, YANG Jiangang, et al. Using nonlinear feedback control for the vibration of a nonlinear vibration system[J]. Journal of Chongqing university of technology: natural science, 2013, 27(1): 27-31.
[17] LIU Yajuan, LEE S M. Synchronization criteria of chaotic Lur’e systems with delayed feedback PD control[J]. Neurocomputing, 2016, 189: 66-71.
[18] 陈烨. 变尺度混沌蚁群优化算法[J]. 计算机工程与应用, 2007, 43(3): 68-70. CHEN Ye. Scaleable chaotic ant colony optimization[J]. Computer engineer and applications, 2007, 43(3): 68-70.
[19] 朱洪华, 黄永华. 基于遗传算法的减摇鳍PID控制器优化[J]. 电脑知识与技术, 2011, 7(11): 2642-2644. ZHU Honghua, HUANG Yonghua. Optimization the PID controller of fin stabilizer based on genetic algorithm[J]. Computer knowledge and technology, 2011, 7(11): 2642-2644.
[20] 李士勇, 柏继云. 连续函数寻优的改进量子扩展蚁群算法[J]. 哈尔滨工程大学学报, 2012, 33(1): 80-84.LI Shiyong, BAI Jiyun. Extended quantum ant colony algorithm for continuous function optimization[J]. Journal of Harbin engineering university, 2012, 33(1): 80-84.
[21] 王辉, 王科俊, 于立君. 减摇鳍模糊免疫自适应PID控制器设计及仿真研究[J]. 海军工程大学学报, 2007, 19(4): 17-21, 29. WANG Hui, WANG Kejun, YU Lijun. Design and simulation of fuzzy immune self-adaptation PID controller of fin stabilizer[J]. Journal of naval university of engineering, 2007, 19(4): 17-21, 29.
[22] 冯铁城, 陶尧森. 可控被动水舱研究[J]. 中国造船, 1997(1): 8-14. FENG Tiecheng, TAO Yaosen. A study on passive controlled antiroll tank[J]. Ship building of China, 1997(1): 8-14.

相似文献/References:

[1]王海稳,张井岗,曲俊海.基于PSO算法的目标值前馈型二自由度PID控制器的优化设计[J].智能系统学报,2006,1(02):58.
 WANG Hai-wen,ZHANG Jing-gang,QU Jun-hai.Optimal design for two degreeoffreedom PID controller based on PSO algorithm[J].CAAI Transactions on Intelligent Systems,2006,1(03):58.
[2]孔 笋,陈增强.一种新的混沌蚁群算法及其在QoS组播路由优化问题中的应用[J].智能系统学报,2010,5(06):498.
 KONG Sun,CHEN Zeng-qiang.A new chaotic ant colony optimization algorithm and its application in a QoS multicast routing problem[J].CAAI Transactions on Intelligent Systems,2010,5(03):498.
[3]于立君,陈佳,刘繁明,等.改进粒子群算法的PID神经网络解耦控制[J].智能系统学报,2015,10(5):699.[doi:10.11992/tis.201406028]
 YU Lijun,CHEN Jia,LIU Fanming,et al.An improved particle swarm optimization forPID neural network decoupling control[J].CAAI Transactions on Intelligent Systems,2015,10(03):699.[doi:10.11992/tis.201406028]
[4]王辉,秦术,刘少英,等.曲线拟合的逆向云改进算法[J].智能系统学报,2014,9(05):590.[doi:10.3969/j.issn.1673-4785.201304078]
 WANG Hui,QIN Shu,LIU Shaoying,et al.An improved algorithm of backward cloud based on curve fitting[J].CAAI Transactions on Intelligent Systems,2014,9(03):590.[doi:10.3969/j.issn.1673-4785.201304078]
[5]李素,袁志高,王聪,等.群智能算法优化支持向量机参数综述[J].智能系统学报,2018,13(01):70.[doi:10.11992/tis.201707011]
 LI Su,YUAN Zhigao,WANG Cong,et al.Optimization of support vector machine parameters based on group intelligence algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(03):70.[doi:10.11992/tis.201707011]
[6]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(06):1121.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(03):1121.[doi:10.11992/tis.201905025]

备注/Memo

备注/Memo:
收稿日期:2016-07-14。
基金项目:国家自然科学基金项目(51479042).
作者简介:王辉,女,1976年生,副教授,博士,主要研究方向为智能控制、智能算法、图像处理、人工免疫。参加国家自然科学基金项目2项、横向课题2项,承担省校教学改革立项3项。发表学术论文30余篇,被EI数据库检索17篇,编著教材6部;车超,男,1988年生,硕士研究生,主要研究方向为智能控制算法、船舶运动控制;于立君,男,1975年生,副教授,博士,主要研究方向为船舶运动控制、先进控制理论及应用。获省科技进步二等奖1项、国家教学成果二等奖1项、省教学成果一等奖1项、二等奖1项。发表学术论文40余篇,主编教材3部。
通讯作者:于立君.E-mail:yulijun@hrbeu.edu.cn.
更新日期/Last Update: 2017-06-25