[1]杨本生,袁祥梦,黄晓光.基于动态优先权蚁群算法的分布式自动化测试调度[J].智能系统学报,2014,9(06):729-733.[doi:10.3969/j.issn.1673-4785.]
 YANG Bensheng,YUAN Xiangmeng,HUANG Xiaoguang.Ant colony algorithm based on dynamic priority for distributed automation test scheduling[J].CAAI Transactions on Intelligent Systems,2014,9(06):729-733.[doi:10.3969/j.issn.1673-4785.]
点击复制

基于动态优先权蚁群算法的分布式自动化测试调度
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年06期
页码:
729-733
栏目:
出版日期:
2014-12-25

文章信息/Info

Title:
Ant colony algorithm based on dynamic priority for distributed automation test scheduling
作者:
杨本生1 袁祥梦2 黄晓光2
1. 河北工程大学 资源学院, 河北 邯郸 056038;
2. 河北工程大学 信息与电气工程学院, 河北 邯郸 056038
Author(s):
YANG Bensheng1 YUAN Xiangmeng2 HUANG Xiaoguang2
1. College of Resources, Hebei University of Engineering, Handan 056038, China;
2. College of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
关键词:
分布式自动化测试蚁群算法任务调度GridSim
Keywords:
distributed automated testingant colony algorithmtask schedulingGridSim
分类号:
TP311.5
DOI:
10.3969/j.issn.1673-4785.
文献标志码:
A
摘要:
针对分布式自动化测试平台中的测试任务调度模块进行了研究分析,采用了基于动态优先权的蚁群算法。该算法主要将动态优先权应用于蚁群算法中的选择搜索最优解的策略中,通过对测试任务优先权的执行情况和任务等待时间增加的改变,优先权高的任务先执行,从而减少蚁群算法的搜索时间,提高搜索能力。通过在Gridsim中的模拟仿真,实验结果表明,此算法可以提高系统的调度性能和测试资源的利用率,提高了系统自动化测试效率。
Abstract:
Using the ant colony algorithm based on dynamic priority, the test task scheduling module in distributed automation test platform was analyzed. The algorithm mainly applies dynamic priority choice to the search of the optimal solution in the strategy of ant colony algorithm. The search time of the ant colony algorithm improves the search ability through implementation of test task priority and change of task waiting time increase, and high priority tasks to perform first. Through the simulation by GridSim, the results of experiment showed that this algorithm can improve the scheduling performance of the system, the utilization rate of test resources, and the efficiency of automated test system.

参考文献/References:

[1] MYERS G J, BADGETT T, SANDLER C. The art of software testing[M]. 3rd ed. Wiley, 2012: 24-29.
[2] PINEDO M L. Scheduling: theory, algorithms, and systems[M]. 4th ed. Springer, 2012: 391-392.
[3] PAGE A, JOHNSTON K, ROLLISON B. How we test software at Microsoft[M]. Microsoft Press, 2008: 216-218.
[4] GU Wenquan, HUANG Chang. Distributed automatic test system research[C]//Proceedings of Computer Science and Network Technology. Harbin, China, 2011: 1834-1836.
[5] CHAN T. Distributed automatic test pattern generation[C]//Proceedings of ASIC Conference and Exhibit. Rochester, NY, 1992: 698-702.
[6] LESSING L, DUMITRESCU I. A new version of ant system for subset problem[C]//Proceedings of the Evolutionary Computation Congress. Washington, DC, USA, 1999:21-25.
[7] 方甲永, 肖明清, 谢娟. 基于遗传蚁群算法的并行测试任务调度与资源配置[J]. 测试技术学报, 2009, 23(4): 343-349.FANG Jiayong, XIAO Mingqing, XIE Juan. Parallel test tasks scheduling and resources configuration based on GA-ACA[J]. Journal of Test And Measurement Technology, 2009, 23(4): 343-349.
[8] 邓见光, 袁华强, 赵跃龙. 一种基于遗传—蚁群算法的网格任务调度策略[J]. 计算机应用研究, 2011, 28(12): 4485-4488.DENG Jianguang, YUAN Huaqiang, ZHAO Yuelong. Grid task scheduling strategy based on genetic-ant algorithm[J]. Application Research of Computers, 2011, 28(12): 4485-4488.

相似文献/References:

[1]冀俊忠,刘椿年,黄 振.基于信息素扩散模型解耦控制策略的蚁群算法[J].智能系统学报,2007,2(04):1.
 JI Jun-zhong,LIU Chun-nian,HUANG Zhen.An ant colony optimization algorithm based on a decouplingcontrol strategy of pheromone diffusion model[J].CAAI Transactions on Intelligent Systems,2007,2(06):1.
[2]印 峰,王耀南,刘 炜,等.个体速度差异的蚁群算法设计及仿真[J].智能系统学报,2009,4(06):528.[doi:10.3969/j.issn.1673-4785.2009.06.010]
 YIN Feng,WANG Yao-nan,LIU Wei,et al.Design and simulation of an ant colony algorithm based on individual velocity differences[J].CAAI Transactions on Intelligent Systems,2009,4(06):528.[doi:10.3969/j.issn.1673-4785.2009.06.010]
[3]程显毅,巩向普.改进的模糊C-均值算法在医学图像分割中的应用[J].智能系统学报,2010,5(01):80.
 CHENG Xian-yi,GONG Xiang-pu.An improved fuzzy Cmeans algorithm for segmentation of medical images[J].CAAI Transactions on Intelligent Systems,2010,5(06):80.
[4]孔 笋,陈增强.一种新的混沌蚁群算法及其在QoS组播路由优化问题中的应用[J].智能系统学报,2010,5(06):498.
 KONG Sun,CHEN Zeng-qiang.A new chaotic ant colony optimization algorithm and its application in a QoS multicast routing problem[J].CAAI Transactions on Intelligent Systems,2010,5(06):498.
[5]钟珞,赵先明,夏红霞.求解最小MPR集的蚁群算法与仿真[J].智能系统学报,2011,6(02):166.
 ZHONG Luo,ZHAO Xianming,XIA Hongxia.An ant colony algorithm and simulation for solving minimum MPR sets[J].CAAI Transactions on Intelligent Systems,2011,6(06):166.
[6]陈明杰,黄佰川,张旻.混合改进蚁群算法的函数优化[J].智能系统学报,2012,7(04):370.
 CHEN Mingjie,HUANG Baichuan,ZHANG Min.Function optimization based on an improved hybrid ACO[J].CAAI Transactions on Intelligent Systems,2012,7(06):370.
[7]莫宏伟,马靖雯.基于蚁群算法的四旋翼航迹规划[J].智能系统学报,2016,11(2):216.[doi:10.11992/tis.201509009]
 MO Hongwei,MA Jingwen.Four-rotor route planning based on the ant colony algorithm[J].CAAI Transactions on Intelligent Systems,2016,11(06):216.[doi:10.11992/tis.201509009]
[8]蒲兴成,李俊杰,吴慧超,等.基于改进粒子群算法的移动机器人多目标点路径规划[J].智能系统学报,2017,12(03):301.[doi:10.11992/tis.201606046]
 PU Xingcheng,LI Junjie,WU Huichao,et al.Mobile robot multi-goal path planning using improved particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2017,12(06):301.[doi:10.11992/tis.201606046]
[9]王辉,车超,于立君,等.鳍-水舱综合减摇混沌系统控制方法研究[J].智能系统学报,2017,12(03):318.[doi:10.11992/tis.201607012]
 WANG Hui,CHE Chao,YU Lijun,et al.Control method for a fin/tank integrated stabilization chaotic system[J].CAAI Transactions on Intelligent Systems,2017,12(06):318.[doi:10.11992/tis.201607012]

备注/Memo

备注/Memo:
收稿日期:2013-9-12;改回日期:。
作者简介:杨本生,男,1956年生,教授、硕士生导师,主要研究方向为矿图数字化、矿山压力及其控制、计算机技术在矿山应用研究,发表学术论文多篇;袁祥梦,女,1987年生,硕士研究生,主要研究方向为软件工程、软件测试;黄晓光,男,1987年生,硕士研究生,主要研究方向为电气自动化。
更新日期/Last Update: 2015-06-16