[1]陈明杰,黄佰川,张旻.混合改进蚁群算法的函数优化[J].智能系统学报,2012,7(04):370-376.
 CHEN Mingjie,HUANG Baichuan,ZHANG Min.Function optimization based on an improved hybrid ACO[J].CAAI Transactions on Intelligent Systems,2012,7(04):370-376.
点击复制

混合改进蚁群算法的函数优化(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年04期
页码:
370-376
栏目:
出版日期:
2012-08-25

文章信息/Info

Title:
Function optimization based on an improved hybrid ACO
文章编号:
1673-4785(2012)04-0370-07
作者:
陈明杰黄佰川张旻
哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001
Author(s):
CHEN Mingjie HUANG Baichuan ZHANG Min
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
混合改进蚁群算法函数优化自适应高斯变异蚁群算法
Keywords:
improved hybrid ant colony optimization function optimization selfadaptive Gaussian mutationant colony optimization
分类号:
TP181
文献标志码:
A
摘要:
针对蚁群算法进化速度慢、容易出现停滞现象的不足,探讨了一种基于自适应信息素挥发因子的改进蚁群算法.针对蚁群算法容易陷入局部最优的缺点,提出了一种基于决策变量高斯变异的改进蚁群算法.针对蚁群算法速度慢的不足,探讨了一种基于决策变量边界自调整的改进蚁群算法.将上述3种改进相融合,提出了一种基于自适应信息素挥发因子、决策变量高斯变异和决策变量边界自调整3种改进策略的混合改进蚁群算法.将其应用于函数优化中,仿真结果表明,混合改进蚁群算法在收敛速度和收敛率方面都有很大改进,具有更好的寻优性能.
Abstract:
Considering the low evolution speed and the tendency towards stagnation of ant colony optimization (ACO), an improved ACO was discussed based on an adaptive pheromone evaporation factor. To avoid the defect of ACO easily falling into the local optimum, another improved ACO was proposed based on Gaussian variation of decision variables. To overcome the shortcoming of the slow speed of ACO, a new and improved ACO was given based on boundary selftuning of the decision variables. Finally, an improved hybrid ant colony algorithm was proposed, which combined the adaptive pheromone evaporation factor, Gaussian variation of decision variables, and boundary selftuning of the decision variables. When applied to function optimization, the simulation results show that the improved hybrid ACO has a higher degree of accuracy, a higher convergence ratio, and improved optimization performance.

参考文献/References:

[1]DERIGO M, CARO G D. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(3): 137172.
[2]张纪会, 高齐圣, 徐心和. 自适应蚁群算法[J]. 控制理论与应用, 2000, 17(1): 18.
 ZHANG Jihui, GAO Qisheng, XU Xinhe.Adaptive ant colony optimization[J]. Control Theory and Applications, 2000, 17(1): 18.
[3]詹士昌, 吴俊. 基于蚁群算法的PID参数优化设计[J]. 测控技术, 2004, 23(2): 6971.
ZHAN Shichang, WU Jun. Design of PID optimization based on ACO[J]. Measurement & Control Technology, 2004, 23(2): 6971.
[4]李玉英. 混沌蚂蚁群优化算法及其应用研究[D]. 北京: 北京邮电大学, 2009: 1521.
LI Yuying. On chaos ant colony optimization and its application[D]. Beijing: Beijing University of Posts and Telecommunications, 2009: 1521.
[5]陈烨. 用于连续函数优化的蚁群算法[J]. 四川大学学报:工程科学版, 2004, 36(6): 117120.
CHEN Ye. Ant colony optimization for continuous functions[J]. Journal of Sichuan University: Engineering Science Edition, 2004, 36(6): 117120.
[6]陈烨. 变尺度混沌蚁群算法[J]. 计算机工程与应用, 2007, 43(3): 6870.
CHEN Ye. On mutative scaled chaos ant colony optimization[J]. Computer Engineering and Applications, 2007, 43(3): 6870.
[7]王颖, 谢剑英. 一种自适应蚁群算法及其仿真研究[J]. 系统仿真学报, 2002, 14(1): 3133.
WANG Ying, XIE Jianying. An adaptive ant colony optimization and its simulations[J]. Journal of System Simulation,2002, 14(1): 3133.
[8]STUTZLE T, HOOS H H.MAXMIN ant system[J].Future Generation Computer Systems, 2000, 16(8): 889914. 
[9]BILCHEV G A, PARMEE I C. The ant colony metaphor for searching continuous space[J]. Lecture Notes in Computer Science, 1995, 993(1): 2539.
[10]GUTJAHR W J. A graphbased ant system and its convergence[J]. Future Generation Computer System, 2000, 16(8): 873888.
[11]DREO J, SIARRY P. Continuous interacting ant colony algorithm based on dense heterarchy[J]. Future Generation Computer Systems, 2004, 20(5): 841856.
[12]周爽,张钧萍,张枫,等.基于蚁群算法的遥感图像聚类方法[J]. 哈尔滨工程大学学报, 2009, 30(2): 210214.
ZHOU Shuang, ZHANG Junping, ZHANG Feng, et al. Clustering method for remote sensing images based on an ant colony algorithm[J]. Journal of Harbin Engineering University, 2009, 30(2): 210214.
[13]赵百轶,张利军,贾鹤鸣. 基于四叉树和改进蚁群算法的全局路径规划[J]. 应用科技, 2011, 38(10): 2328.
ZHAO Baiyi,ZHANG Lijun,JIA Heming. Global path planning based on quadtree and improved ant colony optimization algorithm[J]. Applied Science and Technology, 2011, 38(10): 2328.

相似文献/References:

[1]刘长平,叶春明.具有Lévy飞行特征的蝙蝠算法[J].智能系统学报,2013,8(03):240.
 LIU Changping,YE Chunming.Bat algorithm with the characteristics of Lévy flights[J].CAAI Transactions on Intelligent Systems,2013,8(04):240.
[2]莫愿斌,马彦追,郑巧燕,等.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J].智能系统学报,2014,9(06):747.[doi:10.3969/j.issn.1673-4785.201309075]
 MO Yuanbin,MA Yanzhui,ZHENG Qiaoyan,et al.Improved firefly algorithm based on simplex method and its application in solving non-linear equation groups[J].CAAI Transactions on Intelligent Systems,2014,9(04):747.[doi:10.3969/j.issn.1673-4785.201309075]
[3]周欢,李煜.具有动态惯性权重的布谷鸟搜索算法[J].智能系统学报,2015,10(04):645.[doi:10.3969/j.issn.1673-4785.201409042]
 ZHOU Huan,LI Yu.Cuckoo search algorithm with dynamic inertia weight[J].CAAI Transactions on Intelligent Systems,2015,10(04):645.[doi:10.3969/j.issn.1673-4785.201409042]
[4]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(04):172.[doi:10.11992/tis.201506024]

备注/Memo

备注/Memo:
收稿日期:2011-11-11.
网络出版日期:2012-07-12.
基金项目:国家自然科学基金资助项目(51079033);中央高校基本科研业务费专项资金资助项目(HEUCF100430).
通信作者:陈明杰.
E_mail:chenmingjie@hrbeu.edu.cn.
作者简介:
陈明杰,女,1977年生,副教授,硕士生导师,博士,主要研究方向为复杂系统的智能控制、图像处理与模式识别等.发表学术论文30余篇,其中11篇被EI/ISTP检索.
更新日期/Last Update: 2012-09-26