[1]王大玲,冯时,张一飞,等.社会媒体多模态、多层次资源推荐技术研究[J].智能系统学报,2014,9(03):265-275.[doi:10.3969/j.issn.1673-4785.201403068]
 WANG Daling,FENG Shi,ZHANG Yifei,et al.Study on the recommendations of multi-modal and multi-level resources in social media[J].CAAI Transactions on Intelligent Systems,2014,9(03):265-275.[doi:10.3969/j.issn.1673-4785.201403068]
点击复制

社会媒体多模态、多层次资源推荐技术研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年03期
页码:
265-275
栏目:
出版日期:
2014-06-25

文章信息/Info

Title:
Study on the recommendations of multi-modal and multi-level resources in social media
作者:
王大玲12 冯时12 张一飞12 于戈12
1. 辽宁石油化工大学 信息与控制工程学院, 辽宁 抚顺 113001;
2. 东北大学 医学影像计算教育部重点实验室, 辽宁 沈阳 110819
Author(s):
WANG Daling12 FENG Shi12 ZHANG Yifei12 YU Ge12
1. School of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
2. Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, Shenyang 110819, China
关键词:
社会媒体推荐多模态信息多层次资源用户社群
Keywords:
social mediarecommendationmulti-modal informationmulti-level resourceuser community
分类号:
TP301
DOI:
10.3969/j.issn.1673-4785.201403068
摘要:
社会媒体中多模态和多层次的信息资源和基于各种关系构建的用户社群为推荐系统提供了更广阔的分析和选择空间, 同时也带来了更多的问题与挑战。分析了当前社会媒体中用户与资源的关系以及社会媒体资源推荐的特点, 分别从社会媒体资源推荐策略和相关支撑技术两方面综述了相关工作, 将其概括为"社会媒体中用户角色的变化构成了更加复杂的用户关系"、"社会媒体资源表示形式呈现多模态特点"以及"社会媒体资源推荐应该满足多层次的用户需求", 并从多模态、多层次资源推荐方面提出进一步的研究方向。
Abstract:
The multi-modal and multi-level information resources and user communities based on various relationships in social media provide a broader space for recommenders to analyze and select the resources, but at the same time more problems and challenges develop. In this paper, the relationships between users and resources, and the characteristics of resource recommendations in current social media are analyzed. Related work is surveyed from social media resource recommendations as well as its corresponding support techniques, which can be summarized as follows: more complex relationships among users formed by changes of user roles, multi-modal social media resource expressions, and social media resource recommendations that satisfy the requirements of multi-level users. Finally, further research directions in multi-modal and multi-level resource recommendations are proposed.

参考文献/References:

[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
[2] 黄立威, 李德毅. 社交媒体中的信息推荐[J]. 智能系统学报, 2012, 7(1):1-8. HUANG Liwei, LI Deyi. A review of information recommendation in social media[J]. CAAI Transactions on Intelligent Systems, 2012, 7(1):1-8.
[3] SUN Y, HAN J. Mining heterogeneous information networks:a structural analysis approach[J]. SIGKDD Explorations, 2012, 14(2):20-28.
[4] ZHU X, HUANG Z, SHEN H, et al. Linear cross-modal hashing for efficient multimedia search[C]//ACM Multimedia. Barcelona, Spain, 2013:143-152.
[5] WU P, HOI S, XIA H, et al. Online multimodal deep similarity learning with application to image retrieval[C]//ACM Multimedia. Barcelona, Spain, 2013:153-162.
[6] PAVLIDIS Y, MATHIHALLI M, CHAKRAVARTY I, et al. Anatomy of a gift recommendation engine powered by social media[C]//ACM SIGMOD Conference. Scottsdale, AZ, USA, 2012:757-764.
[7] POPESCU A, GREFENSTETTE G. Mining social media to create personalized recommendations for tourist visits[C]//2nd International Conference and Exhibition on Computing for Geospatial Research & Application. Washington, DC, USA, 2011:37.
[8] SCHIRRU R. Topic-based recommendations in enterprise social media sharing platforms[C]//ACM Conference on Recommender Systems. Barcelona, Spain, 2010:369-372.
[9] 贾大文, 曾承, 彭智勇, 等:一种基于用户偏好自动分类的社会媒体共享和推荐方法[J]. 计算机学报. 2012, 35(11):2381-2391.JIA Dawen, ZENG Cheng, PENG Zhiyong, et al. A user preference based automatic potential group generation method for social media sharing and recommendation[J]. Chinese Journal of Computer, 2012, 35(11):2381-2391.
[10] KOOHBORFARDHAGHIGHI S, KIM J. Using structural information for distributed recommendation in a social network[J]. Applied Intelligence, 2013, 38(2):255-266.
[11] LI L, PENG W, KATARIA S, et al. FRec:a novel framework of recommending users and communities in social media[C]//ACM International Conference on Information and Knowledge Management. San Francisco, CA, USA, 2013:1765-1770.
[12] ZHAO G, LEE M, HSU W, Et al. Community-based user recommendation in uni-directional social networks[C]//ACM International Conference on Information and Knowledge Management. San Francisco, CA, USA, 2013:189-191.
[13] ZHANG H, ZHA Z, YANG Y, et al. Attribute-augmented semantic hierarchy:towards bridging semantic gap and intention gap in image retrieval[C]//ACM Multimedia, Barcelona, Spain, 2013:33-42.
[14] BU J, TAN S, CHEN C, et al. Music recommendation by unified hypergraph:combining social media information and music content[C]//ACM Multimedia. Firenze, Italy, 2010:391-400.
[15] TAN S, BU J, CHEN C, et al. Using rich social media information for music recommendation via hypergraph model[C]//Social Media Modeling and Computing. London, UK, 2011:213-237.
[16] HU C, ZHANG C, WANG T, et al. An adaptive recommendation system in social media[C]//45th Hawaii International Conference on System Sciences. Maui, USA, 2012:1759-1767.
[17] MA X, WANG H, LI H, et al. Enhancing recommended video lists for youtube-like social media[C]//IEEE International Workshop on Multimedia Signal Processing. Banff, AB, Canada, 2012:244-249.
[18] ERNESTO D, LUCAS D, LARS S, et al. Real-time top-n recommendation in social streams[C]//ACM Conference on Recommender Systems. Dublin, Ireland, 2012:59-66.
[19] LI Q, WANG J, CHEN Y, et al. User comments for news recommendation in forum-based social media[J]. Information Science, 2013, 180(24):4929-4939.
[20] MESSENGER A, WHITTLE J. Recommendations based on user-generated comments in social media[C]//IEEE Third International Conference on Social Computing. Boston, MA, USA, 2011:505-508.
[21] PERA M, CONDIE N, NG Y. Personalized book recommendations created by using social media data[C]//WISE 2010 International Symposium WISS, and International Workshops CISE, MBC, Hong Kong, China, 2010:390-403.
[22] GUY I, ZWERDLING N, RONEN I, et al. Social media recommendation based on people and tags[C]//ACM SIGIR Conference on Research and Development in Information Retrieval, Geneva, Switzerland, 2010:194-201.
[23] WU S, RAND W, RASCHID L. Recommendations in social media for brand monitoring[C]//ACM Conference on Recommender Systems. Chicago, IL, USA, 2011:345-348.
[24] XIANG Z. Dynamic social media in online travel informa-tion search:a preliminary analysis[C]//International Conference in Innsbruck, Innsbruck, Austria, 2011:343-353.
[25] Chidlovskii B. Learning recommendations in social media systems by weighting multiple relations[C]//Machine Learning and Knowledge Discovery in Databases-European Conference. Athens, Greece, 2011:328-334.
[26] LIU L, XU H, XING J, et al. "Wow! You are so beautiful today!"[C]//ACM Multimedia, Barcelona, Spain, 2013:3-12.
[27] SUN Y, NORICK B, HAN J, et al. Integrating meta-path selection with user-guided object clustering in heterogeneous information networks[C]//ACM SIGKDD Conference. Beijing, China, 2012:1348-1356.
[28] GUY I, JACOVI M, PERER A, et al. Same places, same things, same people?:Mining user similarity on social media[C]//ACM Conference on Computer Supported Cooperative Work. Savannah, Georgia, USA, 2010:41-50.
[29] BARBIER G, TANG L, LIU H. Understanding online groups through social media[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2011, 1(4):330-338.
[30] YANG C, YANG H, TANG X, et al. Identifying implicit relationships between social media users to support social commerce[C]//International Conference on Electronic Commerce. Singapore 2012:41-47.
[31] JORGE C, ALNEU L. Exploiting behaviors of communities of twitter users for link prediction[J]. Social Network Analysis and Mining, 2013, 3(4):1063-1074.
[32] TANG J, WANG M, HUA X, et al. Social media mining and search[J]. Multimedia Tools and Applications, 2012, 56(1):1-7.
[33] LEE C. Unsupervised and supervised learning to evaluate event relatedness based on content mining from social-media streams[J]. Expert Systems with Applications, 2012, 39(18):13338-13356.
[34] JIN X, LIN C, LUO J, et al. SocialSpamGuard:A data mining-based spam detection system for social media networks[J]. Proceedings of the VLDB Endowment, 2011, 4(12):1458-1461.
[35] LEE C, CROFT W, KIM J. Evaluating search in personal social media collections[C]//International Conference on Web Search and Web Data Mining. Seattle, WA, USA, 2012:683-692.
[36] CHOUDHURY M, COUNTS S, CZERWINSKI M. Find me the right content! diversity-based sampling of social media spaces for topic-centric search[C]//International Conference on Weblogs and Social Media. Barcelona, Catalonia, Spain 2011.
[37] TSAI F. Probabilistic models for social media mining[J]. International Journal of Information Technology and Web Engineering, 2011, 6(1):13-24.
[38] KASCHESKY M, SOBKOWICZ P, BOUCHARD G. Opinion mining in social media:modeling, simulating, and visualizing political opinion formation in the Web[C]//12th Annual International Conference on Digital Government Research. MD, USA, 2011:317-326.
[39] JIN X, WANG C, LUO J, et al. LikeMiner:a system for mining the power of ’like’ in social media networks[C]//International Conference on Knowledge Discovery and Data Mining. San Diego, CA, USA, 2011:753-756.
[40] CUI B, TUNG A, ZHANG C, et al. Multiple feature fusion for social media applications[C]//Proc ACM SIGMOD, Conference. Indianapolis, Indiana, USA, 2010:435-446.
[41] SAXTON G, OH O, KISHORE R. Rules of crowdsourcing:models, issues, and systems of control[J]. Information Systems Management, 2013, 30(1):2-20.
[42] RAWASHDEH M, KIM H, EL-SADDIK A. Social media annotation and tagging based on folksonomy link prediction in a tripartite graph[C]//Advances in Multimedia Modeling. Huangshan, China, 2013:24-35.
[43] LIU L, ZHU F, JIANG M, et al. Mining diversity on social media networks[J]. Multimedia Tools and Applications, 2012, 56(1):179-205.
[44] LING L, ZHAI X, PENG Y. Tri-space and ranking based heterogeneous similarity measure for cross-media retrieval[C]//International Conference on Pattern Recognition. Tsukuba, Japan, 2012:230-233.
[45] ZHAI X, PENG Y, XIAO J. Effective heterogeneous similarity measure with nearest neighbors for cross-media retrieval[C]//Advances in Multimedia Modeling. Klagenfurt, Austria, 2012:312-322.
[46] JIA Y, SALZMANN M, DARRELL T. Learning cross-modality similarity for multinomial data[C]//IEEE International Conference on Computer Vision. Barcelona, Spain, 2011:2407-2414.
[47] WU F, LU X, ZHANG Z, et al. Cross-media semantic representation via bi-directional learning to rank[C]//ACM Multimedia. Barcelona, Spain, 2013:877-886
[48] XIE L, SHAMMA D, SNOEK C. Content is dead:long-live content![C]//ACM Multimedia. Nara, Japan, 2012:7-8.

相似文献/References:

[1]李慧,马小平,胡云,等.融合上下文信息的社会网络推荐系统[J].智能系统学报,2015,10(02):293.[doi:10.3969/j.issn.1673-4785.201406017]
 LI Hui,MA Xiaoping,HU Yun,et al.Social network recommendaton system mixing contex information[J].CAAI Transactions on Intelligent Systems,2015,10(03):293.[doi:10.3969/j.issn.1673-4785.201406017]
[2]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(04):743.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14(03):743.[doi:10.11992/tis.201806002]

备注/Memo

备注/Memo:
收稿日期:2014-03-25。
基金项目:国家自然科学基金资助项目(61370074, 61100026)
作者简介:冯时,男,1981年生,讲师,主要研究方向情感挖掘、网络舆情分析;张一飞,女,1977年生,讲师,主要研究方向为图像处理、多媒体数据挖掘。
通讯作者:王大玲,女,1962年生,教授,中国计算机学会高级会员,中国计算机学会中文信息技术专业委员会委员,主要研究方向为数据挖掘、信息检索、Web推荐等,主持国家自然科学基金项目3项,参与国家自然科学基金项目2项,E-mail:wangdaling@ise.neu.edu.cn。
更新日期/Last Update: 1900-01-01