[1]王耀威,纪志坚,翟海川.仿生机器鱼运动控制方法综述[J].智能系统学报,2014,9(3):276-284.[doi:10.3969/j.issn.1673-4785.201309004]
 WANG Yaowei,JI Zhijian,ZHAI Haichuan.A survey on motion control of the biomimetic robotic fish[J].CAAI Transactions on Intelligent Systems,2014,9(3):276-284.[doi:10.3969/j.issn.1673-4785.201309004]
点击复制

仿生机器鱼运动控制方法综述

参考文献/References:
[1] TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3):40-46.
[2] 蒋新松. 未来机器人技术发展方向的探讨[J]. 机器人, 1996, 18(5):285-291.JIANG Xinsong. An overview of the prospects of robot technologies[J]. Robot, 1996, 18(5):285-291.
[3] 李志成. 仿生机器鱼建模与软硬件实现的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:1-5.LI Zhicheng. The software and hardware design and dynamic research on the robot fish[D]. Harbin:Harbin Institute of Technology, 2007:1-5.
[4] 张芳, 林良明. 多移动机器人协调系统体系结构与相关问题[J]. 机器人, 2001, 23(6):554-558.ZHANG Fang, LIN Liangming. Architecture and related problems concerning cooperative mobile robot system[J]. Robot, 2001, 23(6):554-558.
[5] HU H, LIU J, DUKES I, et al. Design of 3D swim patterns for autonomous robotic fish[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:2406-2411.
[6] MENZEL P, ALUISIO F D. Robo sapiens:evolution of a new species[M]. Cambridge:Material World Book, 2002:80-81.
[7] 喻俊志, 陈尔奎, 王硕, 等. 仿生机器鱼研究的进展与分析[J]. 控制理论与应用, 2003, 20(4):485-491.YU Junzhi, CHEN Erkui, WANG Shuo, et al. Research evolution and analysis of biomimetic robot fish[J]. Control Theory & Applications, 2003, 20(4):485-491.
[8] 梁建宏, 王田苗, 魏洪兴. 水下仿生机器鱼的研究进展I-鱼类推进机理[J]. 机器人, 2002, 24(2):107-111. LIANG Jianhong, WANG Tianmiao, WEI Hongxing. Research and development of underwater robofish I-Fish propulsion mechanism[J]. Robot, 2002, 24(2):107-111.
[9] 梁建宏, 王田苗, 魏洪兴, 等. 水下仿生机器鱼的研究进展Ⅱ-小型实验机器鱼的研制[J]. 机器人, 2002, 24(3):234-238.LIANG Jianhong, WANG Tianmiao, WEI Hongxing, et al. Research and development of underwater robofish Ⅱ-Development of a small experimental robofish[J]. Robot, 2002, 24(3):234-238.
[10] 梁建宏, 王田苗, 魏洪兴, 等. 水下仿生机器鱼的研究进展Ⅲ-水动力学实验研究[J]. 机器人, 2002, 24(4):304-308. LIANG Jianhong, WANG Tianmiao, WEI Hongxing, et al. Underwater robofish research progress Ⅲ-Hydrodynamics experiments of robofish[J]. Robot, 2002, 24(4):304-308.
[11] 王扬威, 王振龙, 李健. 仿生机器鱼研究进展及发展趋势[J]. 机械设计与研究, 2011, 27(2):22-25.WANG Yangwei, WANG Zhenlong, LI Jian. Research development and tendency of biomimetic robot fish[J]. Machine Design and Research, 2011, 27(2):22-25.
[12] 魏清平, 王硕, 谭民, 等. 仿生机器鱼研究的进展与分析[J]. 系统科学与数学, 2012, 32(10):1274-1286.WEI Qingping, WANG Shuo, TAN Ming, et al. Research development and analysis of biomimetic robotic fish[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(10):1274-1286.
[13] LIGHTILL M J. Note on the swimming of slender fish[J]. Journal of Fluids Mechanics, 1960, 9:305-317.
[14] BARRETT D, GROSENBAUGH M, TRIANTAFYLLOU M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil[C]//Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. Monterey, Canada, 1996:1-9.
[15] YU J, WANG L, TAN M. A framework for biomimetic robot fish’s design and its realization[C]//Proceedings of the 2005 American Control Conference. Portland, USA. 2005:1593-1598.
[16] LIU J, HU H. A methodology of modelling fish-like swim patterns for robotic fish[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation. Harbin, China, 2007:1316-1321.
[17] YU J, WANG L, TAN M. Geometric optimization of relative link lengths for biomimetic robotic fish[C]//Proceedings of the IEEE Transactions on Robotics. Edmonton, Canada, 2007, 23:382-386.
[18] YAMAMOTO I, TERADA Y, NAGAMATU T, et al. Propulsion system with flexible/rigid oscillating fin[J]. IEEE Journal of Ocean Engineering, 1995, 20(1):23-30.
[19] MACIVER M A, FONTAINE E, BURDICK J W. Designing future underwater vehicles:principles and mechanisms of the weakly electric fish[J]. IEEE Journal of Ocean Engineering, 2003, 29(3):651-659.
[20] WANG L, CAO Z, TAN M, et al. Mechanical design and implementation of a new biomimetic robot fish[J]. High Technology Letters, 2007, 13(4):343-349.
[21] 朱豪华, 付庄, 赵言正. 柔性机器鱼的仿生运动拟合控制研究[J]. 机电一体化, 2006, 12(3):35-38.ZHU Haohua, FU Zhuang, ZHAO Yanzheng. Motion fit of the biotic robofish with flexible tail[J]. Mechatronics, 2006, 12(3):35-38.
[22] 晁贯良, 王卫兵, 牛健文, 等. D-H坐标系下两栖机器鱼正向运动学分析[J]. 机械设计与制造, 2012, 3:211-213.CHAO Guanliang, WANG Weibing, NIU Jianwen, et al. Forward kinematics analysis of amphibious robot-fish in D-H coordinates[J]. Machinery Design & Manufacture, 2012, 3:211-213.
[23] ROOT R G, COURTLAND H W, SHEPHERD W, et al. Flapping flexible fish[J]. Experiments in Fluids, 2007, 43(5):141-159.
[24] 谢海斌. 基于多波动鳍推进的仿生水下机器人设计、建模与控制[D]. 长沙:国防科技大学, 2006:38-68.XIE Haibin. Design, modeling and control of bionic underwater vehicle propelled by multiple undulatory fins[D]. Changsha:National University of Defense Technology, 2006:38-68.
[25] 蒋小勤, 杜德锋, 周骏. 行波推进仿生机器鱼[J]. 海军工程大学学报, 2007, 19(5):1-5.JIANG Xiaoqin, DU Defeng, ZHOU Jun. Fish robot swimming by long fin traveling wave[J]. Journal of Naval University of Engineering, 2007, 19(5):1-5.
[26] 杨少波, 韩小云, 张代兵, 等. 一种新型的胸鳍摆动模式推进机器鱼设计与实现[J]. 机器人, 2008, 30(6):508-515.YANG Shaobo, HAN Xiaoyun, ZHANG Daibing, et al. Design and development of a new kind of pectoral oscillation Propulsion Robot Fish[J]. Robot, 2008, 30(6):508-515.
[27] 胡天江, 沈林成, 李非, 等. 仿生波动长鳍运动学建模及算法研究[J]. 控制理论与应用, 2009, 26(1):1-7.HU Tianjiang, SHEN Lincheng, LI Fei, et al. Kinematic modeling and motion algorithm for long undulatory fins[J]. Control Theory & Applications, 2009, 26(1):1-7.
[28] WU T Y. Swimming of a waving plate[J]. Fluid Mechanics, 1961, 10:326-344.
[29] LIGHTHILL M J. Aquatic animal propulsion of high hydromechanical efficiency[J]. Fluid Mechanics, 1970, 44:265-301.
[30] LIGHTHIN M J. Large-amplitude elongated-body theory of fish locomotion[C]//Proceedings of the Royal Society of London:Series B. London, 1971:125-138.
[31] VIDELER J J, HESS F. Fast continuous swimming of two pelagic predators, saithe and mackerel:a Kinematic Analysis[J]. Journal of Experimental Biology, 1984, 109:209-228.
[32] 童秉纲, 庄礼贤. 描述鱼类波状游动的流体力学模型及其应用[J]. 自然杂志, 1998, 20(1):1-7.TONG Binggang, ZHUANG Lixian. Hydrodynamic model for fish’s undulatory motion and its applications[J]. Nature, 1998, 20(1):1-7.
[33] 童秉纲. 鱼类波状游动的推进机制[J]. 力学与实践, 2000, 22(3):69-74.TONG Binggang. Discussions on propulsion mechanism of fish undulatory swimming[J]. Mechanics in Engineering, 2000, 22(3):69-74.
[34] KELLY S D, MASON R J, ANHALT C T, et al. Modelling and experimental investigation of carangiform locomotion for control[C]//Proceedings of the 1998 American Control Conference. Philadelphia, USA, 1998:1271-1276.
[35] MCISAAC K A, OSTROWSKI J P. Motion planning for anguilliform locomotion[C]//Proceedings of the IEEE Transactions on Robotics and Automation. Washington, USA, 2003, 19(4):637-652.
[36] SAIMEK S, LI P Y. Motion planning and control of a swimming machine[J]. International Journal of Robotics Research, 2004, 23(1):27-54.
[37] MORGANSEN K A, TRIPLETT B I, KLEIN D J. Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles[J]. IEEE Transactions on Robotics, 2007, 23(6):1184-1199.
[38] 陈宏. 仿生机器鱼巡游和机动的运动机理研究[D]. 合肥:中国科学技术大学, 2006:36-54.CHEN Hong. Kinematic mechanism research on the swimming and maneuvering of robot fish[D]. Hefei:Instrumentation University of Science and Technology of China, 2006:36-54.
[39] 刘英想, 刘军考, 陈维山. 两关节机器鱼无升潜游动动力学建模与仿真[J]. 机械工程师, 2007, 5:19-22.LIU Yingxiang, LIU Junkao, CHEN Weishan. The dynamic mode building and simulation of two-joint fish robot in no up and down movement[J]. Mechanical Engineer, 2007, 5:19-22.
[40] 张毅, 付文勇, 刘洪昌, 等. 三关节机器鱼的尾部动力学建模与仿真[J]. 重庆邮电大学学报:自然科学版, 2008, 20(5):603-609.ZHANG Yi, FU Wenyong, LIU Hongchang, et al. Tail fin dynamic mode building and simulation of three-joint robotic fish[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2008, 20(5):603-609.
[41] 邹克旭, 欧白羽, 王晨, 等. 基于滑模方法的机器鱼运动控制[J]. 机器人技术与应用, 2009, 4:18-21.ZOU Kexu, OU Baiyu, WANG Chen, et al. Robotic fish motion control based on synovial method[J]. Robot Technique and Application, 2009, 4:18-21.
[42] 陈宏, 彭建春, 徐刚. 仿生机器鱼巡游性能的优化研究[J].机床与液压, 2010, 38(7):52-55.CHEN Hong, PENG Jianchun, XU Gang. Optimization of swimming performance of bionic robot fish[J]. Machine Tool & Hydraulics, 2010, 38(7):52-55.
[43] 肖洋, 蒋玉莲. 三关节机器鱼的动力学建模及其关键运动参数的研究[J]. 西南民族大学学报:自然科学版, 2011, 37(5):247-250.XIAO Yang, JIANG Yulian.The research of dynamics model and key motion parameters for three joint robotic fish[J].Journal of Southwest University for Nationalities:Natural Science Edition, 2011, 37(5):247-250.
[44] 万宏, 王超, 夏丹, 等. 机器鱼自主游动中变形体耦合动力学的数值研究[J]. 机械工程学报, 2012, 48(15):32-37.WAN Hong, WANG Chao, XIA Dan, et al. Numerical study on the dynamics of freely self-propelled robotic fish[J]. Journal of Mechanical Engineering, 2012, 48(15):32-37.
[45] LIU Q. Research on dynamics performance of robotic fish based on ADAMS[C]//Proceedings of International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Changsha, China, 2010, 3:61-65.
[46] 俞经虎, 竺长安, 朱家祥, 等.仿生机器鱼尾鳍的动力学研究[J]. 系统仿真学报, 2005, 17(4):947-953.YU Jinghu, ZHU Changan, ZHU Jiaxiang, et al. Research of Steady Control of Tail Fin of Robotic-fish[J]. Journal of System Simulation, 2005, 17(4):947-953.
[47] CRESPI A, BADERTSCHER A, GUIGNARD A, et al. AmphiBot I:an amphibious snake-like robot[J]. Robotics and Autonomous Systems, 2005, 50:163-175.
[48] ZHANG D, HU D, SHEN L, et al. Design of an artificial bionic neural network to control fish-robot’s locomotion[J]. Neurocomputing, 2008, 71(4/5/6):648-654.
[49] CRESPI A, LACHAT D, PASQUIER A, et al. Controlling swimming and crawling in a fish robot using a central pattern generator[J]. Autonomous Robots, 2008, 25(1/2):3-13.
[50] REN Q, XU J, GAO W, et al. Generation of robotic fish locomotion through biomimetic learning[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal. 2012:815-821.
[51] YU J, WANG M, SU Z, et al. Dynamic modeling of a CPG-governed multijoint robotic fish[J]. Advanced Robotics, 2013, 27(4):275-285.
[52] 卢振利, 马书根, 李斌, 等. 基于循环抑制CPG模型控制的蛇形机器人三维运动[J]. 自动化学报, 2007, 33(1):54-58.LU Zhenli, MA Shugen, LI Bin, et al. 3-dimensional Locomotion of a snake-like robot controlled by cyclic inhibitory CPG model[J]. Acta Automatica Sinica, 2007, 33(1):54-58.
[53] 王龙, 谭民, 曹志强, 等. 基于CPG模型的仿生机器鱼运动控制[J]. 控制理论与应用, 2007, 24(5):749-755.WANG Long, TAN Min, CAO Zhiqiang, et al. CPG based motion control of biomimetic robotic fish[J]. Control Theory & Applications, 2007, 24(5):749-755.
[54] 张代兵, 沈林成, 胡德文. 一种新型人工神经元振荡器的设计与应用[J].机器人, 2007, 29(6):581-585.ZHANG Daibing, SHEN Lincheng, HU Dewen. Design and application of a novel artificial neural oscillator[J]. Robot, 2007, 29(6):581-585.
[55] 汪明, 喻俊志, 谭民. 胸鳍推进型机器鱼的CPG控制及实现[J]. 机器人, 2010, 32(2):248-255.WANG Ming, YU Junzhi, TAN min. Central pattern generator based control and implementation for a pectoral-fin propelled robotic fish[J]. Robot, 2010, 32(2):248-255.
[56] NA K I, PARK C S, JEONG I B, et al. Locomotion generator for robotic fish using an evolutionary optimized central pattern generator[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO). Tianjin, China, 2010:1069-1074.
[57] SEO K, CHUNG S J, SLOTINE J J E. CPG-based control of a turtle-like underwater vehicle[J]. Autonomous Robots, 2010, 28(3):247-269.
[58] JEONG I B, PARK C S, NA K I, et al. Particle swarm optimization-based central patter generator for robotic fish locomotion[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). New Orleans, USA. 2011:152-157.
[59] YU J, TAN M, WANG S, et al. Development of a biomimetic robotic fish and its control algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics:Part Bs, 2004, 34(4):1798-1810.
[60] YU J, WANG L, TAN M. A framework for biomimetic robot fish’s design and its realization[C]//The Proceedings of American Control Conference, Portland, USA. 2005, 3:1593-1598.
[61] 谢桂兰. 对求解约束优化问题中的变量轮换法的改进[J].机械, 2001, 28(1):19-21.XIE Guilan. Improvement of cyclic varible method in solving constrained optimization problem[J]. Machinery, 2001, 28(1):19-21.
[62] LOW K H. Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2007, 221(13):295-309.
[63] TSAKIRIS D P, SFAKIOTAKIS M, MENCIASSI A, et al. Polychaete-like undulatory robotic locomotion[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain. 2005:3018-3023.
[64] DELCOMYN F. Neural basis for rhythmic behavior in animals[J]. Science, 1980, 210(4469):492-498.
[65] 郑浩峻, 张秀丽, 李铁民, 等. 基于CPG原理的机器人运动控制方法[J]. 高技术通讯, 2003, 7:64-68.ZHENG Haojun, ZHANG Xiuli, LI Tiemin, et al. CPG-based methods for motion control of robot[J]. High Technology Letters, 2003, 7:64-68.
[66] AMARI S. Characteristics of random nets of analog neuron-like elements[J]. IEEE Transactions on Systems, Man and Cybernetics, 1972, 2(5):643-657.
[67] ZHAO W, HU Y, ZHANG L, et al. Design and CPG-based control of biomimetic robotic fish[J]. IET Control Theory & Applications, 2009, 3(3):281-293.
[68] WANG M, YU J, TAN M.Modeling neural control of robotic fish with pectoral fins using a CPG based network[C]//Proceeding of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009:6502-9507.
[69] MATSUOKA K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biological Cybernetics, 1987, 56(5/6):345-353.
[70] FUKUOKA Y, KIMURA H, COHEN A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. International Journal of Robotics Research, 2003, 22(3/4):187-202.
[71] HU Y, ZHAO W, WANG L, et al. Neural-based control of modular robotic fish with multiple propulsors[C]//Proceedings of 47th IEEE Conference on Decision and Control. Cancun, Mexico. 2008:5232-5237.
[72] IJSPEERT A J, CRESPI A, RYCZKO D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315(5817):1416-1420.
[73] CRESPI A, IJSPEERT A J. Online optimization of swimming and crawling in an amphibious snake robot[J]. IEEE Transactions on Robotics, 2008, 24(1):75-87.
相似文献/References:
[1]陈建平,王建彬,杨宜民.基于大脑情感学习的四轮驱动机器人速度补偿控制[J].智能系统学报,2013,8(4):361.[doi:10.3969/j.issn.1673-4785.201303030]
 CHEN Jianping,WANG Jianbin,YANG Yimin.Velocity compensation control for a four-wheel drive robot based on brain emotional learning[J].CAAI Transactions on Intelligent Systems,2013,8(3):361.[doi:10.3969/j.issn.1673-4785.201303030]
[2]吴琪,李晔.基于四元数的欠驱动AUV的镇定控制设计[J].智能系统学报,2014,9(2):186.[doi:10.3969/j.issn.1673-4785.201210058]
 WU Qi,LI Ye.Stabilization design of underactuated AUV based on quaternion[J].CAAI Transactions on Intelligent Systems,2014,9(3):186.[doi:10.3969/j.issn.1673-4785.201210058]
[3]王建彬,陈建平,杨宜民.动力学解析的四轮全向移动机器人电机解耦控制[J].智能系统学报,2014,9(5):569.[doi:10.3969/j.issn.1673-4785.201304003]
 WANG Jianbin,CHEN Jianping,YANG Yimin.Motor decoupling control for four-wheel omni-directional mobile robot based on dynamic analysis[J].CAAI Transactions on Intelligent Systems,2014,9(3):569.[doi:10.3969/j.issn.1673-4785.201304003]
[4]王平,许炳招,娄保东,等.仿生机器鱼运动学模型优化与实验[J].智能系统学报,2017,12(2):196.[doi:10.11992/tis.201604034]
 WANG Ping,XU Bingzhao,LOU Baodong,et al.Ptimization and experimentation on the kinematic model of bionic robotic fish[J].CAAI Transactions on Intelligent Systems,2017,12(3):196.[doi:10.11992/tis.201604034]

备注/Memo

收稿日期:2013-09-01。
基金项目:国家自然科学基金资助项目(61374062, 61075114)
作者简介:王耀威,男,1989年生,硕士研究生,主要研究方向为多智能体系统;翟海川,男,1988年生,硕士研究生,主要研究方向为多智能体系统。
通讯作者:纪志坚,男,1973年生,教授,博士生导师,博士,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统等。先后主持国家自然科学基金项目2项,先后参与过多项国家自然科学基金及"973"和"863"计划的研究,发表学术论文40余篇,其中被SCI检索16篇,EI 检索30余篇。E-mail:jizhijian@pku.org.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134