[1]王耀威,纪志坚,翟海川.仿生机器鱼运动控制方法综述[J].智能系统学报,2014,9(03):276-284.[doi:10.3969/j.issn.1673-4785.201309004]
 WANG Yaowei,JI Zhijian,ZHAI Haichuan.A survey on motion control of the biomimetic robotic fish[J].CAAI Transactions on Intelligent Systems,2014,9(03):276-284.[doi:10.3969/j.issn.1673-4785.201309004]
点击复制

仿生机器鱼运动控制方法综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年03期
页码:
276-284
栏目:
学术论文—智能系统
出版日期:
2014-06-25

文章信息/Info

Title:
A survey on motion control of the biomimetic robotic fish
作者:
王耀威 纪志坚 翟海川
青岛大学 自动化工程学院, 山东 青岛 266071
Author(s):
WANG Yaowei JI Zhijian ZHAI Haichuan
School of Automation Engineering, Qingdao University, Qingdao 266071, China
关键词:
仿生机器鱼运动控制正弦控制器鱼体波曲线拟合中枢模式发生器
Keywords:
biomimetic robotic fishmotion controlsinusoidal controllerfish body wave curve fittingcentral pattern generator
分类号:
TP301.6
DOI:
10.3969/j.issn.1673-4785.201309004
摘要:
运动控制是仿生机器鱼研究的核心问题, 为此, 依据解决运动控制问题的不同思路, 总结了仿生机器鱼运动控制常见的几种研究方法:基于杆系结构的鱼体波曲线拟合法、正弦控制器方法和基于中枢模式发生器模型的方法, 分别对3种运动控制方法的基本原理和特点进行了总结和归纳, 分析了3种方法在可靠性、稳定性和实时性等方面的优缺点, 最后指出了仿生机器鱼运动控制方法的发展趋势。
Abstract:
Motion control is the key issue in the biomimetic robotic fish research. This paper presents a comprehensive review of motion control of the biomimetic robotic fish under different scenarios. Proposals for motion control of the biomimetic robotic fish reviewed include the method of curve fitting of the fish body wave based on the structure of the bar system, the method of sinusoidal controller and the method based on the central pattern generator (CPG). The principles of each of these methods as well as the corresponding characteristics are discussed , and then the advantages and disadvantages of the three methods are analyzed in respect to their reliability, stability and real-time performance. The developing trends of motion control of the biomimetic robotic fish are also pointed out.

参考文献/References:

[1] TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3):40-46.
[2] 蒋新松. 未来机器人技术发展方向的探讨[J]. 机器人, 1996, 18(5):285-291.JIANG Xinsong. An overview of the prospects of robot technologies[J]. Robot, 1996, 18(5):285-291.
[3] 李志成. 仿生机器鱼建模与软硬件实现的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:1-5.LI Zhicheng. The software and hardware design and dynamic research on the robot fish[D]. Harbin:Harbin Institute of Technology, 2007:1-5.
[4] 张芳, 林良明. 多移动机器人协调系统体系结构与相关问题[J]. 机器人, 2001, 23(6):554-558.ZHANG Fang, LIN Liangming. Architecture and related problems concerning cooperative mobile robot system[J]. Robot, 2001, 23(6):554-558.
[5] HU H, LIU J, DUKES I, et al. Design of 3D swim patterns for autonomous robotic fish[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:2406-2411.
[6] MENZEL P, ALUISIO F D. Robo sapiens:evolution of a new species[M]. Cambridge:Material World Book, 2002:80-81.
[7] 喻俊志, 陈尔奎, 王硕, 等. 仿生机器鱼研究的进展与分析[J]. 控制理论与应用, 2003, 20(4):485-491.YU Junzhi, CHEN Erkui, WANG Shuo, et al. Research evolution and analysis of biomimetic robot fish[J]. Control Theory & Applications, 2003, 20(4):485-491.
[8] 梁建宏, 王田苗, 魏洪兴. 水下仿生机器鱼的研究进展I-鱼类推进机理[J]. 机器人, 2002, 24(2):107-111. LIANG Jianhong, WANG Tianmiao, WEI Hongxing. Research and development of underwater robofish I-Fish propulsion mechanism[J]. Robot, 2002, 24(2):107-111.
[9] 梁建宏, 王田苗, 魏洪兴, 等. 水下仿生机器鱼的研究进展Ⅱ-小型实验机器鱼的研制[J]. 机器人, 2002, 24(3):234-238.LIANG Jianhong, WANG Tianmiao, WEI Hongxing, et al. Research and development of underwater robofish Ⅱ-Development of a small experimental robofish[J]. Robot, 2002, 24(3):234-238.
[10] 梁建宏, 王田苗, 魏洪兴, 等. 水下仿生机器鱼的研究进展Ⅲ-水动力学实验研究[J]. 机器人, 2002, 24(4):304-308. LIANG Jianhong, WANG Tianmiao, WEI Hongxing, et al. Underwater robofish research progress Ⅲ-Hydrodynamics experiments of robofish[J]. Robot, 2002, 24(4):304-308.
[11] 王扬威, 王振龙, 李健. 仿生机器鱼研究进展及发展趋势[J]. 机械设计与研究, 2011, 27(2):22-25.WANG Yangwei, WANG Zhenlong, LI Jian. Research development and tendency of biomimetic robot fish[J]. Machine Design and Research, 2011, 27(2):22-25.
[12] 魏清平, 王硕, 谭民, 等. 仿生机器鱼研究的进展与分析[J]. 系统科学与数学, 2012, 32(10):1274-1286.WEI Qingping, WANG Shuo, TAN Ming, et al. Research development and analysis of biomimetic robotic fish[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(10):1274-1286.
[13] LIGHTILL M J. Note on the swimming of slender fish[J]. Journal of Fluids Mechanics, 1960, 9:305-317.
[14] BARRETT D, GROSENBAUGH M, TRIANTAFYLLOU M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil[C]//Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. Monterey, Canada, 1996:1-9.
[15] YU J, WANG L, TAN M. A framework for biomimetic robot fish’s design and its realization[C]//Proceedings of the 2005 American Control Conference. Portland, USA. 2005:1593-1598.
[16] LIU J, HU H. A methodology of modelling fish-like swim patterns for robotic fish[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation. Harbin, China, 2007:1316-1321.
[17] YU J, WANG L, TAN M. Geometric optimization of relative link lengths for biomimetic robotic fish[C]//Proceedings of the IEEE Transactions on Robotics. Edmonton, Canada, 2007, 23:382-386.
[18] YAMAMOTO I, TERADA Y, NAGAMATU T, et al. Propulsion system with flexible/rigid oscillating fin[J]. IEEE Journal of Ocean Engineering, 1995, 20(1):23-30.
[19] MACIVER M A, FONTAINE E, BURDICK J W. Designing future underwater vehicles:principles and mechanisms of the weakly electric fish[J]. IEEE Journal of Ocean Engineering, 2003, 29(3):651-659.
[20] WANG L, CAO Z, TAN M, et al. Mechanical design and implementation of a new biomimetic robot fish[J]. High Technology Letters, 2007, 13(4):343-349.
[21] 朱豪华, 付庄, 赵言正. 柔性机器鱼的仿生运动拟合控制研究[J]. 机电一体化, 2006, 12(3):35-38.ZHU Haohua, FU Zhuang, ZHAO Yanzheng. Motion fit of the biotic robofish with flexible tail[J]. Mechatronics, 2006, 12(3):35-38.
[22] 晁贯良, 王卫兵, 牛健文, 等. D-H坐标系下两栖机器鱼正向运动学分析[J]. 机械设计与制造, 2012, 3:211-213.CHAO Guanliang, WANG Weibing, NIU Jianwen, et al. Forward kinematics analysis of amphibious robot-fish in D-H coordinates[J]. Machinery Design & Manufacture, 2012, 3:211-213.
[23] ROOT R G, COURTLAND H W, SHEPHERD W, et al. Flapping flexible fish[J]. Experiments in Fluids, 2007, 43(5):141-159.
[24] 谢海斌. 基于多波动鳍推进的仿生水下机器人设计、建模与控制[D]. 长沙:国防科技大学, 2006:38-68.XIE Haibin. Design, modeling and control of bionic underwater vehicle propelled by multiple undulatory fins[D]. Changsha:National University of Defense Technology, 2006:38-68.
[25] 蒋小勤, 杜德锋, 周骏. 行波推进仿生机器鱼[J]. 海军工程大学学报, 2007, 19(5):1-5.JIANG Xiaoqin, DU Defeng, ZHOU Jun. Fish robot swimming by long fin traveling wave[J]. Journal of Naval University of Engineering, 2007, 19(5):1-5.
[26] 杨少波, 韩小云, 张代兵, 等. 一种新型的胸鳍摆动模式推进机器鱼设计与实现[J]. 机器人, 2008, 30(6):508-515.YANG Shaobo, HAN Xiaoyun, ZHANG Daibing, et al. Design and development of a new kind of pectoral oscillation Propulsion Robot Fish[J]. Robot, 2008, 30(6):508-515.
[27] 胡天江, 沈林成, 李非, 等. 仿生波动长鳍运动学建模及算法研究[J]. 控制理论与应用, 2009, 26(1):1-7.HU Tianjiang, SHEN Lincheng, LI Fei, et al. Kinematic modeling and motion algorithm for long undulatory fins[J]. Control Theory & Applications, 2009, 26(1):1-7.
[28] WU T Y. Swimming of a waving plate[J]. Fluid Mechanics, 1961, 10:326-344.
[29] LIGHTHILL M J. Aquatic animal propulsion of high hydromechanical efficiency[J]. Fluid Mechanics, 1970, 44:265-301.
[30] LIGHTHIN M J. Large-amplitude elongated-body theory of fish locomotion[C]//Proceedings of the Royal Society of London:Series B. London, 1971:125-138.
[31] VIDELER J J, HESS F. Fast continuous swimming of two pelagic predators, saithe and mackerel:a Kinematic Analysis[J]. Journal of Experimental Biology, 1984, 109:209-228.
[32] 童秉纲, 庄礼贤. 描述鱼类波状游动的流体力学模型及其应用[J]. 自然杂志, 1998, 20(1):1-7.TONG Binggang, ZHUANG Lixian. Hydrodynamic model for fish’s undulatory motion and its applications[J]. Nature, 1998, 20(1):1-7.
[33] 童秉纲. 鱼类波状游动的推进机制[J]. 力学与实践, 2000, 22(3):69-74.TONG Binggang. Discussions on propulsion mechanism of fish undulatory swimming[J]. Mechanics in Engineering, 2000, 22(3):69-74.
[34] KELLY S D, MASON R J, ANHALT C T, et al. Modelling and experimental investigation of carangiform locomotion for control[C]//Proceedings of the 1998 American Control Conference. Philadelphia, USA, 1998:1271-1276.
[35] MCISAAC K A, OSTROWSKI J P. Motion planning for anguilliform locomotion[C]//Proceedings of the IEEE Transactions on Robotics and Automation. Washington, USA, 2003, 19(4):637-652.
[36] SAIMEK S, LI P Y. Motion planning and control of a swimming machine[J]. International Journal of Robotics Research, 2004, 23(1):27-54.
[37] MORGANSEN K A, TRIPLETT B I, KLEIN D J. Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles[J]. IEEE Transactions on Robotics, 2007, 23(6):1184-1199.
[38] 陈宏. 仿生机器鱼巡游和机动的运动机理研究[D]. 合肥:中国科学技术大学, 2006:36-54.CHEN Hong. Kinematic mechanism research on the swimming and maneuvering of robot fish[D]. Hefei:Instrumentation University of Science and Technology of China, 2006:36-54.
[39] 刘英想, 刘军考, 陈维山. 两关节机器鱼无升潜游动动力学建模与仿真[J]. 机械工程师, 2007, 5:19-22.LIU Yingxiang, LIU Junkao, CHEN Weishan. The dynamic mode building and simulation of two-joint fish robot in no up and down movement[J]. Mechanical Engineer, 2007, 5:19-22.
[40] 张毅, 付文勇, 刘洪昌, 等. 三关节机器鱼的尾部动力学建模与仿真[J]. 重庆邮电大学学报:自然科学版, 2008, 20(5):603-609.ZHANG Yi, FU Wenyong, LIU Hongchang, et al. Tail fin dynamic mode building and simulation of three-joint robotic fish[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2008, 20(5):603-609.
[41] 邹克旭, 欧白羽, 王晨, 等. 基于滑模方法的机器鱼运动控制[J]. 机器人技术与应用, 2009, 4:18-21.ZOU Kexu, OU Baiyu, WANG Chen, et al. Robotic fish motion control based on synovial method[J]. Robot Technique and Application, 2009, 4:18-21.
[42] 陈宏, 彭建春, 徐刚. 仿生机器鱼巡游性能的优化研究[J].机床与液压, 2010, 38(7):52-55.CHEN Hong, PENG Jianchun, XU Gang. Optimization of swimming performance of bionic robot fish[J]. Machine Tool & Hydraulics, 2010, 38(7):52-55.
[43] 肖洋, 蒋玉莲. 三关节机器鱼的动力学建模及其关键运动参数的研究[J]. 西南民族大学学报:自然科学版, 2011, 37(5):247-250.XIAO Yang, JIANG Yulian.The research of dynamics model and key motion parameters for three joint robotic fish[J].Journal of Southwest University for Nationalities:Natural Science Edition, 2011, 37(5):247-250.
[44] 万宏, 王超, 夏丹, 等. 机器鱼自主游动中变形体耦合动力学的数值研究[J]. 机械工程学报, 2012, 48(15):32-37.WAN Hong, WANG Chao, XIA Dan, et al. Numerical study on the dynamics of freely self-propelled robotic fish[J]. Journal of Mechanical Engineering, 2012, 48(15):32-37.
[45] LIU Q. Research on dynamics performance of robotic fish based on ADAMS[C]//Proceedings of International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Changsha, China, 2010, 3:61-65.
[46] 俞经虎, 竺长安, 朱家祥, 等.仿生机器鱼尾鳍的动力学研究[J]. 系统仿真学报, 2005, 17(4):947-953.YU Jinghu, ZHU Changan, ZHU Jiaxiang, et al. Research of Steady Control of Tail Fin of Robotic-fish[J]. Journal of System Simulation, 2005, 17(4):947-953.
[47] CRESPI A, BADERTSCHER A, GUIGNARD A, et al. AmphiBot I:an amphibious snake-like robot[J]. Robotics and Autonomous Systems, 2005, 50:163-175.
[48] ZHANG D, HU D, SHEN L, et al. Design of an artificial bionic neural network to control fish-robot’s locomotion[J]. Neurocomputing, 2008, 71(4/5/6):648-654.
[49] CRESPI A, LACHAT D, PASQUIER A, et al. Controlling swimming and crawling in a fish robot using a central pattern generator[J]. Autonomous Robots, 2008, 25(1/2):3-13.
[50] REN Q, XU J, GAO W, et al. Generation of robotic fish locomotion through biomimetic learning[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal. 2012:815-821.
[51] YU J, WANG M, SU Z, et al. Dynamic modeling of a CPG-governed multijoint robotic fish[J]. Advanced Robotics, 2013, 27(4):275-285.
[52] 卢振利, 马书根, 李斌, 等. 基于循环抑制CPG模型控制的蛇形机器人三维运动[J]. 自动化学报, 2007, 33(1):54-58.LU Zhenli, MA Shugen, LI Bin, et al. 3-dimensional Locomotion of a snake-like robot controlled by cyclic inhibitory CPG model[J]. Acta Automatica Sinica, 2007, 33(1):54-58.
[53] 王龙, 谭民, 曹志强, 等. 基于CPG模型的仿生机器鱼运动控制[J]. 控制理论与应用, 2007, 24(5):749-755.WANG Long, TAN Min, CAO Zhiqiang, et al. CPG based motion control of biomimetic robotic fish[J]. Control Theory & Applications, 2007, 24(5):749-755.
[54] 张代兵, 沈林成, 胡德文. 一种新型人工神经元振荡器的设计与应用[J].机器人, 2007, 29(6):581-585.ZHANG Daibing, SHEN Lincheng, HU Dewen. Design and application of a novel artificial neural oscillator[J]. Robot, 2007, 29(6):581-585.
[55] 汪明, 喻俊志, 谭民. 胸鳍推进型机器鱼的CPG控制及实现[J]. 机器人, 2010, 32(2):248-255.WANG Ming, YU Junzhi, TAN min. Central pattern generator based control and implementation for a pectoral-fin propelled robotic fish[J]. Robot, 2010, 32(2):248-255.
[56] NA K I, PARK C S, JEONG I B, et al. Locomotion generator for robotic fish using an evolutionary optimized central pattern generator[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO). Tianjin, China, 2010:1069-1074.
[57] SEO K, CHUNG S J, SLOTINE J J E. CPG-based control of a turtle-like underwater vehicle[J]. Autonomous Robots, 2010, 28(3):247-269.
[58] JEONG I B, PARK C S, NA K I, et al. Particle swarm optimization-based central patter generator for robotic fish locomotion[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). New Orleans, USA. 2011:152-157.
[59] YU J, TAN M, WANG S, et al. Development of a biomimetic robotic fish and its control algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics:Part Bs, 2004, 34(4):1798-1810.
[60] YU J, WANG L, TAN M. A framework for biomimetic robot fish’s design and its realization[C]//The Proceedings of American Control Conference, Portland, USA. 2005, 3:1593-1598.
[61] 谢桂兰. 对求解约束优化问题中的变量轮换法的改进[J].机械, 2001, 28(1):19-21.XIE Guilan. Improvement of cyclic varible method in solving constrained optimization problem[J]. Machinery, 2001, 28(1):19-21.
[62] LOW K H. Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2007, 221(13):295-309.
[63] TSAKIRIS D P, SFAKIOTAKIS M, MENCIASSI A, et al. Polychaete-like undulatory robotic locomotion[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain. 2005:3018-3023.
[64] DELCOMYN F. Neural basis for rhythmic behavior in animals[J]. Science, 1980, 210(4469):492-498.
[65] 郑浩峻, 张秀丽, 李铁民, 等. 基于CPG原理的机器人运动控制方法[J]. 高技术通讯, 2003, 7:64-68.ZHENG Haojun, ZHANG Xiuli, LI Tiemin, et al. CPG-based methods for motion control of robot[J]. High Technology Letters, 2003, 7:64-68.
[66] AMARI S. Characteristics of random nets of analog neuron-like elements[J]. IEEE Transactions on Systems, Man and Cybernetics, 1972, 2(5):643-657.
[67] ZHAO W, HU Y, ZHANG L, et al. Design and CPG-based control of biomimetic robotic fish[J]. IET Control Theory & Applications, 2009, 3(3):281-293.
[68] WANG M, YU J, TAN M.Modeling neural control of robotic fish with pectoral fins using a CPG based network[C]//Proceeding of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009:6502-9507.
[69] MATSUOKA K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biological Cybernetics, 1987, 56(5/6):345-353.
[70] FUKUOKA Y, KIMURA H, COHEN A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. International Journal of Robotics Research, 2003, 22(3/4):187-202.
[71] HU Y, ZHAO W, WANG L, et al. Neural-based control of modular robotic fish with multiple propulsors[C]//Proceedings of 47th IEEE Conference on Decision and Control. Cancun, Mexico. 2008:5232-5237.
[72] IJSPEERT A J, CRESPI A, RYCZKO D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315(5817):1416-1420.
[73] CRESPI A, IJSPEERT A J. Online optimization of swimming and crawling in an amphibious snake robot[J]. IEEE Transactions on Robotics, 2008, 24(1):75-87.

相似文献/References:

[1]陈建平,王建彬,杨宜民.基于大脑情感学习的四轮驱动机器人速度补偿控制[J].智能系统学报,2013,8(04):361.[doi:10.3969/j.issn.1673-4785.201303030]
 CHEN Jianping,WANG Jianbin,YANG Yimin.Velocity compensation control for a four-wheel drive robot based on brain emotional learning[J].CAAI Transactions on Intelligent Systems,2013,8(03):361.[doi:10.3969/j.issn.1673-4785.201303030]
[2]吴琪,李晔.基于四元数的欠驱动AUV的镇定控制设计[J].智能系统学报,2014,9(02):186.[doi:10.3969/j.issn.1673-4785.201210058]
 WU Qi,LI Ye.Stabilization design of underactuated AUV based on quaternion[J].CAAI Transactions on Intelligent Systems,2014,9(03):186.[doi:10.3969/j.issn.1673-4785.201210058]
[3]王建彬,陈建平,杨宜民.动力学解析的四轮全向移动机器人电机解耦控制[J].智能系统学报,2014,9(05):569.[doi:10.3969/j.issn.1673-4785.201304003]
 WANG Jianbin,CHEN Jianping,YANG Yimin.Motor decoupling control for four-wheel omni-directional mobile robot based on dynamic analysis[J].CAAI Transactions on Intelligent Systems,2014,9(03):569.[doi:10.3969/j.issn.1673-4785.201304003]
[4]王平,许炳招,娄保东,等.仿生机器鱼运动学模型优化与实验[J].智能系统学报,2017,12(02):196.[doi:10.11992/tis.201604034]
 WANG Ping,XU Bingzhao,LOU Baodong,et al.Ptimization and experimentation on the kinematic model of bionic robotic fish[J].CAAI Transactions on Intelligent Systems,2017,12(03):196.[doi:10.11992/tis.201604034]

备注/Memo

备注/Memo:
收稿日期:2013-09-01。
基金项目:国家自然科学基金资助项目(61374062, 61075114)
作者简介:王耀威,男,1989年生,硕士研究生,主要研究方向为多智能体系统;翟海川,男,1988年生,硕士研究生,主要研究方向为多智能体系统。
通讯作者:纪志坚,男,1973年生,教授,博士生导师,博士,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统等。先后主持国家自然科学基金项目2项,先后参与过多项国家自然科学基金及"973"和"863"计划的研究,发表学术论文40余篇,其中被SCI检索16篇,EI 检索30余篇。E-mail:jizhijian@pku.org.cn
更新日期/Last Update: 1900-01-01