[1]罗敏霞,桑睨,何华灿.基于Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的反向三I算法[J].智能系统学报,2012,7(06):494-500.
 LUO Minxia,SANG Ni,HE Huacan.The reverse triple I algorithms based on a class of residual implications induced by the family of SchweizerSklar tnorms[J].CAAI Transactions on Intelligent Systems,2012,7(06):494-500.
点击复制

基于Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的反向三I算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
494-500
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
The reverse triple I algorithms based on a class of residual implications induced by the family of SchweizerSklar tnorms
文章编号:
1673-4785(2012)06-0494-07
作者:
罗敏霞1 桑睨1何华灿2
1. 中国计量学院 理学院,浙江 杭州 310018;
2. 西北工业大学 计算机学院,陕西 西安 710072
Author(s):
LUO Minxia1 SANG Ni1 HE Huacan2
1. College of Sciences, China Jiliang University, Hangzhou 310018, China;
2. School of Computer Science, Northwestern Polytechnical University, Xi′an 710072, China
关键词:
模糊推理 反向三I算法 Schweizer-Sklar三角范数簇FMP问题FMT问题
Keywords:
fuzzy reasoning reverse triple I algorithm SchweizerSklar tnorms fuzzy modus ponens fuzzy modus tollens
分类号:
TP18
文献标志码:
A
摘要:
Schweizer-Sklar三角范数簇具有柔化性, 使得由其构造的逻辑系统在模糊推理中具有良好的属性.将Schweizer-Sklar三角范数簇与模糊推理反向三I算法结合起来, 给出基于Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的反向三I算法和α反向三I算法, 并给出对应三I解的表达式. 结合Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的特点, 讨论当参数取特殊值时对应的特殊蕴涵算子→D,→L,→G,→P的反向三I算法及对应三I解的表达式. 提供一种柔化性的模糊推理反向三I算法.
Abstract:
Since the family of SchweizerSklar tnorms is flexible, they have good characteristics for fuzzy reasoning based on the logic systems which are based on these operators. Combining the fuzzy reasoning reverse triple I algorithm and a class of residual implications induced by the family of SchweizerSklar tnorms, the reverse triple I algorithms and αreverse triple I algorithm are proposed, as well as the corresponding expressions of reverse triple I solutions and αreverse triple I solutions. Combined with the characteristics of the class of residual implications induced by the family of SchweizerSklar tnorms, this paper discusses the reverse triple I algorithm based on→D,→L,→G,→P, when the parameter takes some special values, and the corresponding expressions of reverse triple I solutions are proposed. A flexible fuzzy reasoning reverse triple I algorithm is provided.

参考文献/References:

[1]裴道武. 关于模糊逻辑与模糊推理逻辑基础问题的十年研究综述[J]. 工程数学学报, 2004, 21 (2): 249258.
PEI Daowu. A survey of ten years′ studies on fuzzy logic and fuzzy reasoning[J]. Journal of Engineering Mathmatics, 2004, 21 (2): 249258.
[2]王国俊. 模糊推理的全蕴涵三I 算法[J]. 中国科学: E辑, 1999, 29 (1): 4353.
[3]宋世吉, 吴澄. 模糊推理的反向三I 算法[J]. 中国科学: E辑, 2002, 32 (2): 230246.
[4]LIU H W. The correct expressions of reverse triple I method for fuzzy reasoning[J]. Fuzzy Information and Engineering,2009, 62 (2): 14891499.
[5]彭家寅, 侯健, 李洪兴. 基于某些常见蕴涵算子的反向三I 算法[J]. 自然科学进展, 2005, 15 (4): 404410.
[6]SCHWEIZER B, SKLAR A. Associative functions and statistical triangle inequalities[J]. Publicationes Mathematicae Debrecen, 1961, 8: 169186.
[7]SCHWEIZER B, SKLAR A. Associative functions and abstract semigroups[J]. Publicationes Mathematicae Debrecen, 1963, 10: 6981.
[8]WHALEN T. Parameterized Rimplications [J]. Fuzzy Sets and Systems, 2003, 134 (2): 231281.
[9]张小红, 何华灿, 徐扬. 基于SchweizerSklar T范数的模糊逻辑系统[J]. 中国科学: E辑, 2005, 35 (12): 13141326.
[10]〖JP3〗谷敏强, 刘智斌. 基于SchweizerSklar 算子的模糊推理模型的连续性[J]. 应用数学学报, 2010, 33(3): 532546.
GU Minqiang, LIU Zhibin. On the continuity of the fuzzy reasoning models based on SchweizerSklar operations[J]. Acta Mathematicae Applicatae Sinica, 2010, 33(3): 532546.
[11]姚宁.基于一致范数的逻辑系统的研究[D].杭州:中国计量学院, 2011: 1527.

相似文献/References:

[1]王士同,谢振平,李涵雄.模糊推理的统计敏感性分析[J].智能系统学报,2007,2(02):57.
 WANG Shi-tong,XIE Zhen-ping,LI Han-xiong.Statistical sensitivity analysis of fuzzy reasoning[J].CAAI Transactions on Intelligent Systems,2007,2(06):57.
[2]杨亚锋.基于集对逻辑的近似推理方法研究[J].智能系统学报,2015,10(6):921.[doi:10.11992/tis.201507044]
 YANG Yafeng.Research on approximate inference method based on set pair logic[J].CAAI Transactions on Intelligent Systems,2015,10(06):921.[doi:10.11992/tis.201507044]

备注/Memo

备注/Memo:
收稿日期: 2012-05-16.
网络出版日期:2012-11-16.
基金项目:国家自然科学基金资助项目(61273018);浙江省自然科学基金资助项目(Y1110651). 
通信作者:罗敏霞.
E-mail:minxialuo@163.com.
作者简介:
罗敏霞,女,1964年生,教授,博士,中国人工智能学会基础专业委员会常务委员.主要研究方向为计算机科学中的非经典逻辑、模糊推理算法等.发表学术论文70余篇,10余篇被SCI\\EI检索,出版专著2部. 
桑睨,女,1987年生,硕士研究生,主要研究方向为模糊逻辑与模糊推理算法. 
何华灿,男,1938年生,教授,博士生导师,原中国人工智能学会副理事长暨人工智能基础专业委员会主任.主要研究方向为人工智能基础、泛逻辑学和统一无穷理论.发表学术论文160余篇,其中30余篇被SCI、EI检索,出版专著6部.
更新日期/Last Update: 2013-03-19