[1]王士同,谢振平,李涵雄.模糊推理的统计敏感性分析[J].智能系统学报,2007,2(02):57-64.
 WANG Shi-tong,XIE Zhen-ping,LI Han-xiong.Statistical sensitivity analysis of fuzzy reasoning[J].CAAI Transactions on Intelligent Systems,2007,2(02):57-64.
点击复制

模糊推理的统计敏感性分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年02期
页码:
57-64
栏目:
出版日期:
2007-04-25

文章信息/Info

Title:
Statistical sensitivity analysis of fuzzy reasoning
文章编号:
1673-4785(2007)02-0057-08
作者:
王士同1谢振平1李涵雄2
1 .江南大学信息工程学院,江苏无锡214122;
2.香港城市大学制造工程与工程管理系,香港
Author(s):
WANG Shi-tong1XIE Zhen-ping1LI Han-xiong2
1.College of Information Engineering, Southern Yangtze University, Wuxi 214122, China;
2.Department of MEEM, Faculty of Sci. & Eng., City University of Hong Ko ng, Hong Kong SAR, China
关键词:
模糊推理模糊规则链接模糊推理统计敏感性
Keywords:
fuzzy reasoning fuzzy rule syllogistic fuzzy reasoning statistical sensitivity
分类号:
TP18
文献标志码:
A
摘要:
在设计模糊逻辑系统时,如何实现其对输入噪声的鲁棒性是一个首要的问题,相应地如何很好地分析其对输入噪声的鲁棒性(也称敏感性分析)也就成了一个重要问题.使用统计的方法,对常见的模糊推理方法进行了敏感性分析.首先以均值与方差为基础,提出了2个模糊集的ε统计相等的概念;随后导出了常见的模糊推理方法的统计敏感性,这包括链接模糊推理与多规则模糊推理.与前人相关工作不同的是,更着重于模糊推理的方差分析,这一方法从数理统计的角度来看能更好地揭示模糊推理本质的敏感性.
Abstract:
Robustness of input noise is an important issue when designing a fuzzy logic system. In this paper, a statisticsbased method is introduced to analyz e the sensitivity of various popular fuzzy reasoning methods. Using the new conce pt of εstatisticalequalities, the statistical sensitivity between two f uzzy set s is analyzed based on their means and variances. Then the statistical sensitivi ties of various popular fuzzy reasoning methods are derived, including syllogist ic fuzzy reasoning and fuzzy reasoning with multiple rules. Different from other research work, the variance analysis of fuzzy reasoning is particularly emphasi zed to better reveal the sensitivity of fuzzy reasoning from a statistical persp ective. 

参考文献/References:

[1] TORRA V. OWA operators in data modeling and reidentification [J]. IE EE Trans on Fuzzy Systems, 2004, 12(5): 652-660.
[2]CAI K C. Robustness of fuzzy reasoning and δequalities of fuzzy sets [J]. IEEE Trans on Fuzzy Systems, 2001, 9(5): 738-750.
[3]YING M S. Perturbation of Fuzzy reasoning [J]. IEEE Trans on Fuzzy Sy stems, 1999, 7(5): 625-629.
[4]ZADEH L A. The concept of a linguistic variable and its applications to approximate reasoning (I)[J]. Information Science, 1974, 8(2): 199-249.
[5]ZADEH L A. The concept of a linguistic variable and its applications to approximate reasoning (II) [J]. Information Science, 1974, 8(3): 301-357.
[6]ZADEH L A. The concept of a linguistic variable and its applications to approximate reasoning (III) [J]. Information Science, 1975, 9(1): 43-80.
[7]DUBOIS D, PRADE H. Fuzzy sets in approximate reasoning, Part 1:Inference w ith possibility distributions [J]. Fuzzy Sets and Systems, 1991, 40(1): 143-20 2.
[8]DUBOIS D, PRADE H. Fuzzy sets in approximate reasoning, Part 2:Logical a pproaches [J]. Fuzzy Sets and Systems, 1991, 40(1): 203-244.
[9]LIU Y, KERRE F E. An overview of fuzzy quantifiers (Ⅱ): reasoning and a pplications [J]. Fuzzy Sets and Systems, 1998, 95(2): 135-146.
[10]NAKANISHI H, TURKSEN I B, SUGENO M. A review and comparison of si x reasoning methods [J]. Fuzzy Sets and Systems, 1993, 57(3): 257-294.
[11]WANG G J. On the logic foundation of fuzzy reasoning [J]. Information Science, 1999, 117(1): 47-88.
[12]MIZUMOTO M, ZIMMERMANN H J. Comparison of fuzzy reasoning methods [J] . Fuzzy Sets and Systems, 1982, 8(3): 151-186.
[13]CAO Z, KANDEL A. Applicability of some fuzzy implication operators [J ]. Fuzzy Sets and Systems, 1989, 31(2): 151-186. 
[14]WANG L X. A course in fuzzy systems and control[M]. Englewood Cliffs, NJ: PrenticeHall, 1997.
[15]CAI KY, δequalities of fuzzy sets [J]. Fuzzy Sets and Systems, 19 97, 76(1): 97-112.
[16]PAPPIS C P. Value approximation of fuzzy systems variables [J]. Fuzzy Sets and Systems, 1991, 39(1): 111-115.
[17]HONG D H, HWANG SY. A note on the value similarity of fuzzy systems var iables [J]. Fuzzy Sets and Systems, 1994, 66(3): 383-386.
[18]LEE E S, ZHU Q. Fuzzy and evidence reasoning [M]. Hiedelberg: PhysicaV erlag, 1995.
[19]GUAN J W, BELL D A. Approximate reasoning and evidence theory [J]. Info rmation Science, 1997, 96(3): 207-235
[20]HSIAO W H, CHEN S M, LEE C H. A new interpolative reasoning method in s parse rulebased systems [J]. Fuzzy Sets and Systems, 1998, 93(1): 17-22.
[21]CASTRO J L, TRILLAS E, ZURITA J M. Nonmonotic fuzzy reasoning [J]. Fuzzy Sets and Systems, 1998, 94(3): 217-225.
[22]DRIANKOV D, HELLENDOORN H, REINFRANK M. An Introduction to Fuzzy Contro l [M]. New York: SpringerVerlag, 1993.
[23]PAPPIS C P, KARACAPILIDIS N I, A comparative assessment of measures of similarity of fuzzy values [J]. Fuzzy Sets and Systems, 1994, 56(2): 171-174. 
[24]CHANG T C, HASEGAWA K, IBBS C W. The effects of membership functions on fuzzy reasoning [J]. Fuzzy Sets and Systems, 1991, 44(2): 169-186.
[25]CORDóN O, HERRERA F, PEREGRíN A. Searching for basic properties obtai ning robust implication operators in fuzzy control [J]. Fuzzy Sets and Systems , 2000, 111(2): 237-251.
 [26]MELEK W W, GOLDENBERG A A. The development of a robust fuzzy inference mechanism [J]. Int J of Approximate Reasoning 2005, 39(1): 29-47.
[27]ZHANG L, CAI K. Optimal fuzzy reasoning and its robust analysis [J]. Int J Intelligent Systems, 2004, 19(11): 1033-1049.
[28]LI Y, LI D, PEDRYCZ W, WU J. An approach to measure the robustness of f uzzy reasoning [J]. Int J Intelligent Systems, 2005, 20(4): 393-413.

相似文献/References:

[1]孙富春,杨 晋,刘华平.SISO Mamdani模糊系统作为函数逼近器的必要条件[J].智能系统学报,2009,4(04):288.
 SUN Fu-chun,YANG Jin,LIU Hua-ping.Preconditions for SISO Mamdani fuzzy systems to perform as function approximators[J].CAAI Transactions on Intelligent Systems,2009,4(02):288.
[2]赵潇菲,张井岗.柔性倒立摆的模糊控制算法[J].智能系统学报,2010,5(04):347.
 ZHAO Xiao-fei,ZHANG Jing-gang.A fuzzy control method for flexiblejoint inverted pendulums[J].CAAI Transactions on Intelligent Systems,2010,5(02):347.
[3]罗敏霞,桑睨,何华灿.基于Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的反向三I算法[J].智能系统学报,2012,7(06):494.
 LUO Minxia,SANG Ni,HE Huacan.The reverse triple I algorithms based on a class of residual implications induced by the family of SchweizerSklar tnorms[J].CAAI Transactions on Intelligent Systems,2012,7(02):494.
[4]段海滨,马冠军,赵振宇.基于模糊规则和动态蚁群贝叶斯网络的无人作战飞机态势评估[J].智能系统学报,2013,8(02):119.[doi:10.3969/j.issn.1673-4785.201211031]
 DUAN Haibin,MA Guanjun,ZHAO Zhenyu.UCAV situation assessment based on fuzzy rules and dynamic ant colony-Bayesian network[J].CAAI Transactions on Intelligent Systems,2013,8(02):119.[doi:10.3969/j.issn.1673-4785.201211031]
[5]杨亚锋.基于集对逻辑的近似推理方法研究[J].智能系统学报,2015,10(6):921.[doi:10.11992/tis.201507044]
 YANG Yafeng.Research on approximate inference method based on set pair logic[J].CAAI Transactions on Intelligent Systems,2015,10(02):921.[doi:10.11992/tis.201507044]
[6]李微,乔俊飞,韩红桂,等.模糊规则相似性计算与性能分析研究[J].智能系统学报,2017,12(01):124.[doi:10.11992/tis.201512040]
 LI Wei,QIAO Junfei,HAN Honggui,et al.Computing and performance analysis of similarity between fuzzy rules[J].CAAI Transactions on Intelligent Systems,2017,12(02):124.[doi:10.11992/tis.201512040]

备注/Memo

备注/Memo:
收稿日期:2006-10-08.
基金项目:
教育部优秀人才计划(NCET040496);
南京大学计算机软件新技术国家重点实验室开放课题.
作者简介:
王士同,男,1964年生,教授,博士生导师,主要研究方向为模糊人工智能、模式识别/图像处理和生物信息学等,先后十多次留学英国、日本和香港地区,在国内外重要杂志上发表数十篇学术论文.
E-mail:wxwangst@yahoo.com.cn.
 谢振平,男,1979年生,博士研究生,主要研究方向为模式识别与图像处理. E-mail:xiezhenping@yahoo.com.cn.
更新日期/Last Update: 2009-05-06