[1]梅雪,胡石,许松松,等.基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用[J].智能系统学报,2012,7(06):512-517.
 MEI Xue,HU Shi,XU Songsong,et al.Multi scale feature based double layer HMM and its application in behavior recognition[J].CAAI Transactions on Intelligent Systems,2012,7(06):512-517.
点击复制

基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
512-517
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
Multi scale feature based double layer HMM and its application in behavior recognition
文章编号:
1673-4785(2012)06-0512-06
作者:
梅雪胡石许松松张继法
南京工业大学 自动化与电气工程学院,江苏 南京 211816
Author(s):
MEI Xue HU Shi XU Songsong ZHANG Jifa
College of Automation and Electrical Engineering, Nanjing University of Technology, Nanjing 211816, China
关键词:
双层隐马尔可夫模型行为识别多尺度特征智能视频监控
Keywords:
doublelayer HMM (DLHMM) behavior recognition multiscale feature intelligent video surveillance
分类号:
TP391.4
文献标志码:
A
摘要:
借鉴人类视觉感知所具有的多尺度、多分辨性的特性,针对智能视频监控系统的人体运动行为识别,提出了一种基于多尺度特征的双层隐马尔可夫模型.根据人体行为关键姿态数确定HMM的状态数目,发掘人体运动行为隐藏的多尺度结构间的关系,将运动轨迹和人体姿态边缘小波矩2个不同尺度特征应用于2层HMM,提供更为丰富的行为尺度间的相关信息.分别用Weizmann人体行为数据库和自行拍摄的室内视频,对人体运动行为识别进行仿真实验,结果表明,五状态HMM模型更符合人体运动行为特点,基于多尺度特征的五状态双层隐马尔可夫模型具有较高的识别率.
Abstract:
Learning from multiscale and multidistinguish attributes of human beings’ visual perception and aiming at human movement behavior recognition in intelligent video surveillance system, a doublelayer hidden markov model (DLHMM) is developed based on multiscale behavior features. Considering the human behavior characteristics, the number of HMM states is according to the number of key gestures selected. Discovering the relationship between the multiscale structures hidden in the human movement behavior, two different scale featureshuman motion trajectory and wavelet moment of human gesture’s edge, are applied respectively in two layers of DLHMM, so as to provide more scale information about behavior. Experiments, using Israel Weizmann human behavior database and human actions indoor recorded by ourselves, show the fivestate HMM more accords with the human motion behavior characteristics, and the fivestate DLHMM based on multiscale feature has a higher recognition rate compared with traditional methods using one layer HMM.

参考文献/References:

[1]黎洪松,李达.人体运动分析研究的若干新进展[J]. 模式识别与人工智能, 2009, 22(1): 7078. 
LI Hongsong, LI Da.Some advances in human motion analysis[J].Pattern Recognition and Aritificial Intelligence, 2009, 22(1): 7078.
[2] WEINLAND D, RONFARD R. A survey of vision based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding, 2011, 115(2): 224241.
[3] PAUCHOO C, De CHIN L. A daily behavior enabled hidden Markov model for human behavior understanding[J]. Pattern Recognition, 2008, 41(2): 15721580.
[4] NASCIMENTO C J, FIGUEIREDO A M T, MARQUES S J. Trajectory classification using switched dynamical hidded Markov models[J]. IEEE Trans on Image Processing, 2010, 19 (5): 13381348.
[5] HERVIEU A, BOUTHEMY P, CADRE J P L. A HMM based method for recognizing dynamic video contents from trajectories[C]//Proceedings of International Conference on Image Processing. San Antonio, USA, 2007: 533536.
[6] UDDIN Z, NGUYEN T, JEONG K, et al. Human activity recognition using body jointangle features and hidden Markov model[J]. Electronics and Telecommunications Research Institute, 2011, 33(4): 569579.
[7] YOUNG L, SUNG C. Activity recognition using hierachical hidden Markov models on a smartphone with 3D accelerometer[C]//6th International Conference on HAIS.Berlin:SpringerVerlag, 2011: 460467.
[8]钱堃,马旭东,戴先中. 基于抽象隐马尔可夫模型的运动行为识别方法[J]. 模式识别与人工智能, 2009, 22(3): 433439.
QIAN Kun, MA Xudong,DAI Xianzhong. Motion activity recognition based on abstract hidden Markov model[J].Pattern Recognition and Aritificial Intelligence, 2009, 22(3): 433439.
[9]CHEN Changhong, LIANG Jimin, ZHU Xiuchang. Gait recognition based on improved dynamic Bayesian networks[J]. Pattern Recognition, 2011, 44(4): 988995. 
[10]胡石,梅雪. 人体行为动作的形状轮廓特征提取及识别[J]. 计算机工程, 2012, 38(4): 266268.
HU Shi,MEI Xue.Shape contour feature extraction and recognition of human behavior motion[J].Computer Engineering, 2012, 38(4): 266268.
[11] NEGIN N, FARBOD R, HOSSEIN S. A novel approach to HMMbased speech recognition systems using particle swarm optimization[J]. Mathematical and Computer Modelling, 2010, 52 (12): 19101920.

相似文献/References:

[1]姬晓飞,谢旋,任艳.深度学习的双人交互行为识别与预测算法研究[J].智能系统学报,2020,15(3):484.[doi:10.11992/tis.201812029]
 JI Xiaofei,XIE Xuan,REN Yan.Human interaction recognition and prediction algorithm based on deep learning[J].CAAI Transactions on Intelligent Systems,2020,15(06):484.[doi:10.11992/tis.201812029]

备注/Memo

备注/Memo:
收稿日期: 2012-03-15.
网络出版日期:2012-11-16.
基金项目:江苏省高校自然科学基金资助项目(09KJB510002); 江苏省博士后科研资助计划资助项目(1001027B);南京工业大学青年学科基金资助项目(39710006).
通信作者:梅雪.
E-mail: mx@njut.edu.cn.
作者简介:
梅雪,女,1975年生,副教授,硕士生导师,主要研究方向为图像处理、模式识别及计算机视觉.
胡石,男,1988年生,硕士研究生,主要研究领域为模式识别、图像处理.
张继法,男,1987年生,硕士研究生,主要研究领域为模式识别、图像处理.
更新日期/Last Update: 2013-03-19