[1]许为,葛列众,高在峰.人-AI交互: 实现“以人为中心AI”理念的跨学科新领域[J].智能系统学报,2021,16(4):605-621.[doi:10.11992/tis.202012050]
 XU Wei,GE Liezhong,GAO Zaifeng.Human-AI interaction: An emerging interdisciplinary domain for enabling human-centered AI[J].CAAI Transactions on Intelligent Systems,2021,16(4):605-621.[doi:10.11992/tis.202012050]
点击复制

人-AI交互: 实现“以人为中心AI”理念的跨学科新领域

参考文献/References:
[1] ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented intelligence: collaboration and cognition[J]. Frontiers of information technology & electronic engineering, 2017, 18(2): 153-179.
[2] XU Wei. Toward human-centered AI: a perspective from human-computer interaction[J]. Interactions, 2019, 26(4): 42-46.
[3] 吴朝晖. 混合增强智能[EB/OL]. (2019-11-29) [2020-12-30]. https://www.wicongress.org/2020/zh/article/487.
WU Zhaohui. Hybrid augmented intelligence[EB/OL]. (2019-11-29) [2020-12-30] https://www.wicongress.org/2020/zh/article/487
[4] SHNEIDERMAN B. Design lessons from AI’s two grand goals: human emulation and useful applications[J]. IEEE transactions on technology and society, 2020, 1(2): 73-82.
[5] SHNEIDERMAN B. Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy Human-Centered AI Systems[J]. ACM transactions on interactive intelligent systems, 2020, 10(4): 26.
[6] MCGREGOR S. AI Incidents Database[EB/OL]. 2016, [2021-06-01] https://incidentdatabase.ai/.
[7] 许为. 五论以用户为中心的设计: 从自动化到智能时代的自主化以及自动驾驶车[J]. 应用心理学, 2020, 26(2): 108-128
XU Wei. User-centered design (V): from automation to the autonomy and autonomous vehicles in the intelligence era[J]. Chinese journal of applied psychology, 2020, 26(2): 108-128
[8] AUERNHAMMER J. Human-centered AI: the role of human-centered design research in the development of AI[M]//BOESS S, CHEUNG M, CAIN R. Synergy-DRS International Conference. 2020.
[9] RAHWAN I, CEBRIAN M, OBRADOVICH N, et al. Machine behaviour[J]. Nature, 2019, 568(7753): 477-486.
[10] KABER D B. A conceptual framework of autonomous and automated agents[J]. Theoretical issues in ergonomics science, 2018, 19(4): 406-430.
[11] XU Wei. From automation to autonomy and autonomous vehicles: challenges and opportunities for human-computer interaction[J]. Interactions, 2021, 28(1): 48-53.
[12] BRILL J C, CUMMINGS M L, EVANS III A W, et al. Navigating the advent of human-machine teaming[J]. Proceedings of the human factors and ergonomics society annual meeting, 2018, 62(1): 455-459.
[13] JOHNSON M, VERA A. No AI is an island: the case for teaming intelligence[J]. AI magazine, 2019, 40(1): 16-28.
[14] PRADA R, PAIVA A. Human-agent interaction: challenges for bringing humans and agents together[C]//3rd International Workshop on Human-Agent Interaction Design and Models Held at AAMAS’2014-13th International Conference on Autonomous Agents and Multi-Agent Systems. Paris, France, 2014: 1-10.
[15] CUMMINGS M L, CLARE A S. Holistic modelling for human-autonomous system interaction[J]. Theoretical issues in ergonomics science, 2015, 16(3): 214-231.
[16] AMERSHI S, WELD D, VORVOREANU M, et al. Guidelines for human-AI interaction[M]. Glasgow: ACM, 2019.
[17] LI F F. How to make A. I. That’s good for people[N]. The New York times, 2018.
[18] 许为. 四论以用户为中心的设计: 以人为中心的人工智能[J]. 应用心理学, 2019, 25(4): 291-305
XU Wei. User-centered design (IV): human-centered artificial intelligence[J]. Chinese journal of applied psychology, 2019, 25(4): 291-305
[19] SHNEIDERMAN B. Human-centered artificial intelligence: reliable, safe & trustworthy[J]. International journal of human-computer interaction, 2020, 36(6): 495-504.
[20] 许为, 葛列众. 智能时代的工程心理学[J]. 心理科学进展, 2020, 28(9): 1409-1425
XU Wei, GE Liezhong. Engineering psychology in the era of artificial intelligence[J]. Advances in psychological science, 2020, 28(9): 1409-1425
[21] 许为. 人-计算机交互作用研究和应用新思路的探讨[J]. 人类工效学, 2005, 11(4): 37-40
XU Wei. Recent trend of research and applications on human-computer interaction[J]. Chinese journal of ergonomics, 2005, 11(4): 37-40
[22] AMERSHI S, CAKMAK M, KNOX W B, et al. Power to the people: the role of humans in interactive machine learning[J]. AI magazine, 2014, 35(4): 105-120.
[23] HASSANI H, SILVA E S, UNGER S, et al. Artificial intelligence (AI) or intelligence augmentation (IA): what is the future?[J]. AI, 2020, 1(2): 143-155.
[24] 胡源达, 孙效华, 张何辛, 等. 支持人在环路混合智能的交互设计研究[J]. 包装工程, 2020, 41(18): 38-47
HU Yuanda, SUN Xiaohua, ZHANG Hexin, et al. Interaction design in human-in-the-loop hybrid intelligence[J]. Packaging engineering, 2020, 41(18): 38-47
[25] 郑庆华. 人机混合增强智能的典型应用专题前言[J]. 计算机研究与发展, 2020, 57(12): 2479-2480
ZHENG Qinghua. Preface to the applications of human-machine hybrid enhanced intelligence[J]. Journal of computer research and development, 2020, 57(12): 2479-2480
[26] O’NEILL T A, MCNEESE N J, BARRON A, et al. Human-autonomy teaming: a review and analysis of the empirical literature[J]. Human factors: the journal of the human factors and ergonomics society, 2020. DOI:10.1177/0018720820960865.
[27] DEMIR M, COOKE N J, AMAZEEN P G. A conceptual model of team dynamical behaviors and performance in human-autonomy teaming[J]. Cognitive systems research, 2018, 52: 497-507.
[28] BINDEWALD J M, RUSNOCK C F, MILLER M E. (2017). Measuring human trust behavior in human-machine teams[C]//Proceedings of the AHFE 2017 International Conference on Human Factors in Simulation and Modeling. Los Angeles, USA, 2017.
[29] BANSAL G, NUSHI B, KAMAR E, et al. Beyond accuracy: the role of mental models in human-AI team performance[C]//Proceedings of the Seventh AAAI Conference on Human Computation and Crowdsourcing. 2019: 2-11.
[30] OZKAYA I. The behavioral science of software engineering and human-machine teaming[J]. IEEE software, 2020, 37(6): 3-6.
[31] HARING K S, MOSLEY A, PRUZNICK S, et al. Robot authority in human-machine teams: effects of human-like appearance on compliance[C]//11th International Conference on Virtual, Augmented and Mixed Reality. Applications and Case Studies. Orlando, USA, 2019: 63-78.
[32] PETERS N. Interruption timing prediction via prosodic task boundary model for human-machine Teaming[C]//Proceedings of the 2019 Future Information and Communication Conference. San Francisco, USA, 2019: 501-522.
[33] EHSAN U, TAMBWEKAR P, CHAN L, et al. Automated rationale generation: a technique for explainable AI and its effects on human perceptions[C]//Proceedings of the 24th International Conference on Intelligent User Interfaces. Marina del Ray, USA, 2019: 263-274.
[34] WINTERSBERGER P, NICKLAS H, MARTLBAUER T, et al. Explainable automation: personalized and adaptive UIs to foster trust and understanding of driving automation systems[C]//12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Virtual Event, USA, 2020: 252-261.
[35] INTEL NEWS. Mobileye and UDELV ink deal for autonomous delivery[EB/OL]. (2021-04-12) [2021-07-01] https://www.intel.com/content/www/us/en/newsroom/news/mobileye-udelv-deal-autonomous-delivery.html#gs.15ib8a
[36] ISO (International Organization for Standardization). ISO/TR 9241-810: 2020, Ergonomics of human-system interaction-part 810: robotic, intelligent and autonomous systems[S]. BSI Standards Publication, 2020.
[37] GOOGLE PAIR. People + AI Guidebook: Designing human-centeredAI products [EB/OL]. 2019, [2020-01-01] https://pair.withgoogle.com/2019.
[38] CEREJO J. Design process of human-centered AI — Part2 [EB/OL].2021, [2021-06-01] https://bootcamp.uxdesign.cc/human-centered-ai-design-process-part-2-empathize-hypothesis-6065db967716.
[39] HOLMQUIST L E. Intelligence on tap: artificial intelligence as a new design material[J]. Interactions, 2017, 24(4): 29-33.
[40] DE SIO F S, VAN DEN HOVEN J. Meaningful human control over autonomous systems: a philosophical account[J]. Frontiers in robotics and AI, 2018, 5: 15.
[41] ENGELBART D C. Augmenting human intellect: a conceptual framework. SRI summary report AFOSR-3223[R]. Washington: Air Force Office of Scientific Research, 1962.
[42] RAISAMO R, RAKKOLAINEN I, MAJARANTA P, et al. Human augmentation: past, present and future[J]. International journal of human-computer studies, 2019, 131: 131-143.
[43] STANNEY K M, SCHMORROW D D, JOHNSTON M, et al. Augmented cognition: an overview[J]. Reviews of human factors and ergonomics, 2009, 5(1): 195-224.
[44] WU Zhaohui, ZHENG Nenggan, ZHANG Shaowu, et al. Maze learning by a hybrid brain-computer system[J]. Scientific reports, 2016, 6(1): 31746.
[45] 王党校, 郑一磊, 李腾, 等. 面向人类智能增强的多模态人机交互[J]. 中国科学: 信息科学, 2018, 48(4): 449-465
WANG Dangxiao, ZHENG Yilei, LI Teng, et al. Multi-modal human-machine interaction for human intelligence augmentation[J]. Science in China informationis, 2018, 48(4): 449-465
[46] LICKLIDER J C R. Man-computer symbiosis[J]. IRE transactions on human factors in electronics, 1960, HFE-1(1): 4-11.
[47] 吴朝晖, 俞一鹏, 潘纲, 等. 脑机融合系统综述[J]. 生命科学, 2014, 26(6): 645-649
WU Zhaohui, YU Yipeng, PAN Gang, et al. A review of brain- computer fusion systems[J]. Chinese bulletin of life sciences, 2014, 26(6): 645-649
[48] WU Z, ZHENG N, ZHANG S, et al. Maze learning by a hybrid brain-computer system[J]. Scientific reports, 2016, 6: 1-12.
[49] ZANZOTTO F M. Viewpoint: human-in-the-loop Artificial Intelligence[J]. Journal of artificial intelligence research, 2019, 64: 243-252.
[50] PAN Yunhe. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409-413.
[51] SALVI C, BRICOLO E, KOUNIOS J, et al. Insight solutions are correct more often than analytic solutions[J]. Thinking & reasoning, 2016, 22(4): 443-460.
[52] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3
ZHENG Nanning. The new era of AI[J]. Chinese journal of intelligent science and technology, 2019, 1(1): 1-3
[53] 赵云波. 人机混合的智能控制[M]//王飞跃, 陈俊龙. 智能控制. 北京: 中国科学技术出版社, 2019.
[54] SUN R. Potential of full human-machine symbiosis through truly intelligent cognitive systems[J]. AI & society, 2020, 35(1): 17-28.
[55] KITCHIN J, BABER C. A comparison of shared and distributed situation awareness in teams through the use of agent-based modelling[J]. Theoretical issues in ergonomics science, 2016, 17(1): 8-41.
[56] STANTON N A, SALMON P M, WALKER G H, et al. State-of-science: situation awareness in individuals, teams and systems[J]. Ergonomics, 2017, 60(4): 449-466.
[57] 刘烨, 汪亚珉, 卞玉龙, 等. 面向智能时代的人机合作心理模型[J]. 中国科学: 信息科学, 2018, 48(4): 376-389
LIU Ye, WANG Yamin, BIAN Yulong, et al. A psychological model of human-computer cooperation for the era of artificial intelligence[J]. Science in China informationis, 2018, 48(4): 376-389
[58] FRIDMAN L. Human-centered autonomous vehicle systems: principles of effective shared autonomy [EB/OL]. (2018-10-01) [2021-06-01] https://arxiv.org/pdf/1810.01835.pdf.
[59] 范俊君, 田丰, 杜一, 等. 智能时代人机交互的一些思考[J]. 中国科学: 信息科学, 2018, 48(4): 361-375
FAN Junjun, TIAN Feng, DU Yi, et al. Thoughts on human-computer interaction in the age of artificial intelligence[J]. Science in China informationis, 2018, 48(4): 361-375
[60] KRAFFT P M, MACY M, PENTLAND A. Bots as virtual confederates: design and ethics[C]//Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, USA, 2017: 183-190.
[61] CRANDALL J W, OUDAH M, TENNOM, et al. Cooperating with machines[J]. Nature communications, 2018, 9(1): 233.
[62] GUNNING D, STEFIK M, CHOI J, et al. XAI—explainable artificial intelligence[J]. Science robotics, 2019, 4(37): eaay7120.
[63] BOND R R, MULVENNA M, WAN H, et al. Human centered artificial intelligence: weaving UX into algorithmic decision making[C]//International Conference on Human-Computer Interaction. Bucharest, Romania, 2019: 2-9.
[64] MILLER T, HOWE P, SONENBERG L. Explainable AI: beware of inmates running the asylum. [EB/OL]. (2017-12-01) [2021-06-01] https://arxiv.org/pdf/1712.00547.pdf.
[65] EHSAN U, WINTERSBERGER P, LIAO Q V, et al. Operationalizing human-centered perspectives in explainable AI[C]//Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. New York, USA, 2021: 1-6.
[66] KALUARACHCHI T, REIS A, NANAYAKKARA S. A review of recent deep learning approaches in human-centered machine learning[J]. Sensors, 2021, 21(7): 2514.
[67] ABDUL A, VERMEULEN J, WANG D D, et al. Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal, Canada, 2018: 582.
[68] BRONIATOWSKI D A. Psychological foundations of explainability and interpretability in AI[R]. Gaithersburg: National Institute of Standards and Technology, 2021.
[69] HOFFMAN R R, KLEIN G, MUELLER S T. Explaining explanation for “explainable AI”[J]. Proceedings of the human factors and ergonomics society annual meeting, 2018, 62(1): 197-201.
[70] ENDSLEY M R. From here to autonomy: lessons learned from human-automation research[J]. Human factors: the journal of the human factors and ergonomics society, 2017, 59(1): 5-27.
[71] SARTER N B, WOODS D D. How in the world did we ever get into that mode? Mode error and awareness in supervisory control[J]. Human factors: the journal of the human factors and ergonomics society, 1995, 37(1): 5-19.
[72] 许为. 自动化飞机驾驶舱中人-自动化系统交互作用的心理学研究[J]. 心理科学, 2003, 26(3): 523-524
XU Wei. Psychological studies of human-automation interactions in automated cockpits[J]. Psychological science, 2003, 26(3): 523-524
[73] BAINBRIDGE L. Ironies of automation[J]. Automatica, 1983, 19(6): 775-779.
[74] XU Wei. Status and challenges: human factors in developing modern civil flight decks[J]. Chinese journal of ergonomics, 2004, 10(4): 53-56.
[75] DE VISSER E J, PAK R, SHAW T H. From ‘automation’ to ‘autonomy’: the importance of trust repair in human-machine interaction[J]. Ergonomics, 2018, 61(10): 1409-1427.
[76] CUMMINGS M L, BRITTON D. Regulating safety-critical autonomous systems: past, present, and future perspectives[M]//PAK R, DE VISSER E J, ROVIRA E. Living with Robots. Amsterdam: Elsevier, 2020: 119-140.
[77] SAE (Society of Automotive Engineers). J3016_201806, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[S]. SAE, 2018.
[78] HANCOCK P A. Some pitfalls in the promises of automated and autonomous vehicles[J]. Ergonomics, 2019, 62(4): 479-495.
[79] BIONDI F, ALVAREZ I, JEONG K A. Human-system cooperation in automated driving[J]. International journal of human-computer interaction, 2019, 35(11): 917-918.
[80] 许为. 再论以用户为中心的设计: 新挑战和新机遇[J]. 人类工效学, 2017, 23(1): 82-86
XU Wei. User-centered design (II): new challenges and opportunities[J]. Chinese journal of ergonomics, 2017, 23(1): 82-86
[81] 百度. AI-人机交互趋势研究[R]. 百度人工智能交互设计院 (AIID), 2019.
Baidu. AI-Human-Computer Interaction Trend Research[R]. Baidu Artificial Intelligence Interaction Design Institute (AIID), 2019.
[82] 范向民, 范俊君, 田丰, 等. 人机交互与人工智能: 从交替浮沉到协同共进[J]. 中国科学: 信息科学, 2019, 49(3): 361-368
FAN Xiangmin, FAN Junjun, TIAN Feng, et al. Human-computer interaction and artificial intelligence: from competition to integration[J]. Science in China informationis, 2019, 49(3): 361-368
[83] 葛列众, 许为. 用户体验: 理论和实践[M]. 北京: 中 国人民大学出版社, 2020.
[84] DONAHOE E. Human centered AI: building trust, democracy and human rights by design[C]//An Overview of Stanford’s Global Digital Policy Incubator and the XPRIZE Foundation’s June 11th Event. Palo Alto, USA, 2018.
[85] MITTELSTADT B. AI ethics-too principled to fail? [EB/OL]. (2019-01-01) [2021-06-01] https://robotic.legal/wp-content/uploads/2019/05/SSRN-id3391293.pdf.
[86] BUOLAMWINI J, GEBRU T, GENDER SHADES. Intersectional accuracy disparities in commercial gender classification[C]//Proceedings of the 1st Conference on Fairness, Accountability and Transparency. New York, USA, 2018: 77-91.
[87] YANG Qian. Machine learning as a UX design material: how can we imagine beyond automation, recommenders, and reminders[C]//Conference on 2018 AAAI Spring Symposium Series: User Experience of Artificial Intelligence. Palo Alto, USA, 2018.
[88] YANG Q. STEINFELD A. ROSE C. ZIMMERMAN J. Re-examining whether, why, and how human-AI interaction is uniquely difficult to design[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York, USA, 2020: 1-13.
[89] BUDIU R, LAUBHEIMER P. Intelligent assistants have poor usability: a user study of Alexa, google assistant, and Siri[R]. Nielsen Norman Group, 2018.
[90] GIRARDIN F, LATHIA N. When user experience designers partner with data scientists[R]. Palo Alto: AAAI, 2017.
[91] 许为, 葛列众. 人因学发展的新取向[J]. 心理科学进展, 2018, 26(9): 1521-1534
XU Wei, GE Liezhong. New trends in human factors[J]. Advances in psychological science, 2018, 26(9): 1521-1534
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨 溢,杨 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

收稿日期:2020-12-28。
作者简介:许为,留美心理学博士和计算机科学硕士,教授;国际知名IT企业资深研究员、人机交互技术委员会主席。任国际标准化组织(ISO)人?系统交互专业委员会成员、中国认知工效学分会和工程心理学分会理事,主要研究方向为人机交互和人因工程。主持或参与国家、省部级、国际合作项目10余项,成果应用在国内外多种飞机型号和IT产品。主持或参与开发国内外人因工程、人机交互设计标准20余部,出版中英文专著4部,发表学术论文40余篇;葛列众,教授,博士,中国心理学会工程心理学专业委员会主任委员,主要研究方向为人机交互、面孔认知、用户可用性和用户体验。主持国家及省部级项目8项、华为等公司横向课题30余项、国际合作项目4项。2019年获得中国心理学会“学科建设成就奖”,2019年领衔团队获得中央军委装备发展部等5部委颁发的“中国航天载人工程突出成就集体奖”。发表学术论文174篇;高在峰,教授,博士生导师,中国认知工效学会理事,主要研究方向为认知心理学、工程心理学。主持国家及省部级项目9项,发表学术论文40余篇.
通讯作者:许为.E-mail:xuwei11@zju.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134