[1]王华鲜,华容,刘华平,等.无人机群多目标协同主动感知的自组织映射方法[J].智能系统学报,2020,15(3):609-614.[doi:10.11992/tis.201908022]
 WANG Huaxian,HUA Rong,LIU Huaping,et al.Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J].CAAI Transactions on Intelligent Systems,2020,15(3):609-614.[doi:10.11992/tis.201908022]
点击复制

无人机群多目标协同主动感知的自组织映射方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
609-614
栏目:
吴文俊智能科学技术奖论坛
出版日期:
2020-09-05

文章信息/Info

Title:
Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems
作者:
王华鲜1 华容1 刘华平2 赵怀林1 孙富春2
1. 上海应用技术大学 电气与电子工程学院,上海 201499;
2. 清华大学 智能技术与系统国家重点实验室,北京 100084
Author(s):
WANG Huaxian1 HUA Rong1 LIU Huaping2 ZHAO Huailin1 SUN Fuchun2
1. School of Electrical and Electronics Engineering, Shanghai Institute of Technology, Shanghai 201499, China;
2. State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
关键词:
多机器人系统主动感知旅行商问题自组织映射网络路径规划异构机器人贝塞尔曲线路径平滑
Keywords:
multi-robot systemactive perceptiontraveling salesman problemself-organizing mapping networkpath planningheterogeneous robotBézier curvepath smoothing
分类号:
TP391.9
DOI:
10.11992/tis.201908022
摘要:
针对主动感知问题多为单机器人系统的主动视觉问题,本文提出了基于自组织映射特征网络的异构机器人主动感知框架,为无人机团队规划出遍历所有目标所需时间最短的平滑路径。首先把多目标主动感知场景建模为带邻域的多旅行商问题,然后使用自组织映射网络为无人机团队规划出旅行时间最短的闭环轨迹,最后利用三阶贝塞尔曲线对轨迹做平滑处理。仿真结果和对比实验表明,本文的方法在多目标主动感知的应用中有着较好的效果。
Abstract:
It is known that the robots fitted with cameras, also sometimes called as unmanned aerial vehicles, are used to monitor inaccessible areas. The data sent by robots are analyzed through various artificial neural networks. Active vision is particularly important to cope with problems like occlusions, limited field of view, and limited resolution of the camera. In view of the active vision difficulty faced in active perception system, this paper proposes an active perception framework of heterogeneous robots based on the self-organizing feature map, a type of multi-objective active learning algorithm, and plans the shortest smooth path for the drone team to traverse all the targets. First, the multi-target active perception scene is modeled as multiple traveling salesmen problem with neighborhood. After that, the self-organizing mapping network is used to find the shortest closed-loop track for travel time, and then the track is smoothed with the third-order Bézier curve, a parametric curve. The simulation results and comparative experiments show that proposed method has better effects in the application of multi-objective active perception.

参考文献/References:

[1] ATANASOV N, LE NY J, DANIILIDIS K, et al. Decentralized active information acquisition: Theory and application to multi-robot SLAM[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA: 2015: 4775-4782.
[2] GIFFORD C M, WEBB R, BLEY J, et al. A novel low-cost, limited-resource approach to autonomous multi-robot exploration and mapping[J]. Robotics and autonomous systems, 2010, 58(2): 186-202.
[3] BEST G, FAIGL J, FITCH R. Online planning for multi-robot active perception with self-organising maps[J]. Autonomous robots, 2018, 42(4): 715-738.
[4] BEST G, CLIFF O M, PATTEN T, et al. Dec-MCTS: Decentralized planning for multi-robot active perception[J]. The international journal of robotics research, 2019, 38(2/3): 316-337.
[5] FITCH R, ISLER V, TOKEKAR P, et al. Guest editorial: special issue on active perception[J]. Autonomous robots, 2018, 42(2): 175-176.
[6] CHEN Shengyong, LI Youfu, KWOK N M. Active vision in robotic systems: A survey of recent developments[J]. The international journal of robotics research, 2011, 30(11): 1343-1377.
[7] BAJCSY R. Active perception[J]. Proceedings of the IEEE, 1988, 76(8): 966-1005.
[8] BAJCSY R, ALOIMONOS Y, TSOTSOS J K. Revisiting active perception[J]. Autonomous robots, 2018, 42(2): 177-196.
[9] CHARROW B. Information-theoretic active perception for multi-robot teams[D]. Philadelphia, USA: University of Pennsylvania, 2015.
[10] GIBSON J J. The ecological approach to visual perception[M]. New York, USA: Psychology Press, 2013.
[11] PATTEN T, ZILLICH M, FITCH R, et al. Viewpoint evaluation for online 3-D active object classification[J]. IEEE robotics and automation letters, 2016, 1(1): 73-81.
[12] YAN Zhi, JOUANDEAU N, CHERIF A A. A survey and analysis of multi-robot coordination[J]. International journal of advanced robotic systems, 2013, 10(12): 399.
[13] SCHLOTFELDT B, THAKUR D, ATANASOV N, et al. Anytime planning for decentralized multirobot active information gathering[J]. IEEE robotics and automation letters, 2018, 3(2): 1025-1032.
[14] FAIGL J, HOLLINGER G A. Unifying multi-goal path planning for autonomous data collection[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: 2014.
[15] BEKTAS T. The multiple traveling salesman problem: an overview of formulations and solution procedures[J]. Omega, 2006, 34(3): 209-219.
[16] MOHAJER A, BAVAGHAR M, FARROKHI H. Mobility-aware load balancing for reliable self-organization networks: multi-agent deep reinforcement learning[J]. Reliability engineering and system safety, 2020, 202: 107056.
[17] 欧伟奇, 尹辉, 许宏丽, 等. 一种基于Multi-Egocentric视频运动轨迹重建的多目标跟踪算法[J]. 智能系统学报, 2019, 14(2): 246-253
OU Weiqi, YIN Hui, XU Hongli, et al. A multi-object tracking algorithm based on trajectory reconstruction on Multi-Egocentric video[J]. CAAI transactions on intelligent systems, 2019, 14(2): 246-253
[18] 李景灿, 丁世飞. 基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报, 2019, 14(6): 1121-1126
LI Jingcan, DING Shifei. Twin support vector machine based on artificial fish swarm algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1121-1126
[19] 张飞, 白伟, 乔耀华, 等. 基于改进D*算法的无人机室内路径规划[J]. 智能系统学报, 2019, 14(4): 662-669
ZHANG Fei, BAI Wei, QIAO Yaohua, et al. UAV indoor path planning based on improved D* algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 662-669
[20] 刘建华, 刘华平, 杨建国, 等. 测距式传感器同时定位与地图创建综述[J]. 智能系统学报, 2015, 10(5): 655-662
LIU Jianhua, LIU Huaping, YANG Jianguo, et al. A survey of range-only SLAM for mobile robots[J]. CAAI transactions on intelligent systems, 2015, 10(5): 655-662

相似文献/References:

[1]蔡自兴,任孝平,邹 磊.分布式多机器人通信仿真系统[J].智能系统学报,2009,4(04):309.
 CAI Zi-xing,REN Xiao-ping,ZOU Lei.A simulated communications system for distributed multirobots[J].CAAI Transactions on Intelligent Systems,2009,4(3):309.
[2]吴军,徐昕,连传强,等.协作多机器人系统研究进展综述[J].智能系统学报,2011,6(01):13.
 WU Jun,XU Xin,LIAN Chuanqiang,et al.A survey of recent advances in cooperative multirobot systems[J].CAAI Transactions on Intelligent Systems,2011,6(3):13.
[3]袁明新,叶兆莉,程帅,等.干扰素调节的多机器人协作搬运免疫网络算法[J].智能系统学报,2014,9(01):76.[doi:10.3969/j.issn.1673-4785.201303006]
 YUAN Mingxin,YE Zhaoli,CHENG Shuai,et al.Multi-robot cooperative handling based on immune network algorithm regulated by interferon[J].CAAI Transactions on Intelligent Systems,2014,9(3):76.[doi:10.3969/j.issn.1673-4785.201303006]
[4]曹鹏飞,郝矿荣,丁永生.面向多机器人动态任务分配的事件驱动免疫网络算法[J].智能系统学报,2018,13(06):952.[doi:10.11992/tis.201707022]
 CAO Pengfei,HAO Kuangrong,DING Yongsheng.Event-driven immune network algorithm for multi-robot dynamic task allocation[J].CAAI Transactions on Intelligent Systems,2018,13(3):952.[doi:10.11992/tis.201707022]

备注/Memo

备注/Memo:
收稿日期:2019-08-19。
基金项目:国家自然科学基金项目(U1613212);上海市“联盟计划”项目(LM201756)
作者简介:王华鲜,硕士研究生,主要研究方向为主动感知与多机器人协作;华容,教授,上海市徐汇区智能交通协会理事长,主要研究方向为轨道交通控制运行、机器人路径规划与多目标优化研究。发表学术论文30余篇;孙富春,教授,博士生导师,国家杰出青年,IEEE Senior Member,国家863计划专家组成员,中国人工智能学会副理事长,中国人工智能学会智能控制与智能管理专业委员会副主任兼秘书长,主要研究方向为智能控制与机器人、多模态数据感知、模式识别。主持国家自然科学基金5项。发表学术论文200余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update: 1900-01-01