[1]陈增强,黄朝阳,孙明玮,等.基于大变异遗传算法进行参数优化整定的负荷频率自抗扰控制[J].智能系统学报,2020,15(1):41-49.[doi:10.11992/tis.201906026]
 CHEN Zengqiang,HUANG Zhaoyang,SUN Mingwei,et al.Active disturbance rejection control of load frequency based on big probability variation’s genetic algorithm for parameter optimization[J].CAAI Transactions on Intelligent Systems,2020,15(1):41-49.[doi:10.11992/tis.201906026]
点击复制

基于大变异遗传算法进行参数优化整定的负荷频率自抗扰控制

参考文献/References:
[1] 陶顺. 现代电力系统电能质量评估体系的研究[D]. 北京: 华北电力大学, 2008: 14.
TAO Shun. Study on the power quality assessment system of modern power systems[D]. Beijing: North China Electric power University, 2008: 14.
[2] ELGERD O I, FOSHA C E. Optimum megawatt-frequency control of multiarea electric energy systems[J]. IEEE transactions on power apparatus and systems, 1970(4): 556–563.
[3] SHAYEGHI H, SHAYANFAR H A, JALILI A. Load frequency control strategies: A state-of-the-art survey for the researcher[J]. Energy conversion and management, 2009, 50(2): 344–353.
[4] CHATTERJEE K. Design of dual mode PI controller for load frequency control[J]. International journal of emerging electric power systems, 2011, 11(4): 24–31.
[5] 鲁尔洁, 陈峦, 李坚, 等. 基于改进模糊控制的发电系统频率调节研究[J]. 电力系统保护与控制, 2017(8): 46–52
LU Erjie, CHEN Luan, LI Jian, et al. Research on power system frequency regulation based on improved fuzzy control[J]. Power system protection and control, 2017(8): 46–52
[6] 王亚刚, 许晓鸣. 自适应鲁棒最优PI控制器[J]. 自动化学报, 2009, 35(10): 1352–1356
WANG Yagang, XU Xiaoming. Adaptive and optimal PI controller with robustness[J]. Acta automatica sinica, 2009, 35(10): 1352–1356
[7] 孟光伟, 姚琼荟, 李槐树. 电力系统负载频率控制器的离散变结构控制设计[J]. 电力自动化设备, 2008, 28(10): 46–49
MENG Guangwei, YAO Qionghui, LI Huaishu. Load-frequency controller based on discrete variable structure control theory[J]. Electric power automation equipment, 2008, 28(10): 46–49
[8] DONDE V, PAI M A, HISKENS I A. Simulation and optimization in an AGC system after deregulation[J]. IEEE power engineering review, 2007, 21(8): 58–58.
[9] BEVRANI H. Robust power system frequency control[M]. Springer US, 2009.
[10] QUDAIH Y S, BERNARD M, MITANI Y, et al. Model predictive based load frequency control design in the presence of DFIG wind turbine[C]//International conference on electric power & energy conversion systems. 2012.
[11] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281–295
LI Jie, QI Xiaohui, WAN Hui, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control theory and applications, 2017, 34(3): 281–295
[12] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2017, 34(3): 281–295
HAN Jingqing. Active disturbances rejection control technique[J]. Frontier science, 2017, 34(3): 281–295
[13] 陈增强, 刘俊杰, 孙明玮. 一种新型控制方法——自抗扰控制技术及其工程应用综述[J]. 智能系统学报, 2018, 13(6): 865–877
CHEN Zengqiang, LIU Junjie, SUN Mingwei. Overview of a novel control method: active disturbance rejection control technology and its practical applications[J]. CAAI transactions on intelligent systems, 2018, 13(6): 865–877
[14] 李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报, 2018, 13(1): 70–84
LI Su, YUAN Zhigao, WANG Cong, et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI transactions on intelligent systems, 2018, 13(1): 70–84
[15] THOMAS B. Evolutionary computation: Toward a new philosophy of machine intelligence[J]. Complexity, 1997, 2(4): 239–251.
[16] PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE control systems, 2002, 22(3): 52–67.
[17] 马钧水. 改进遗传算法搜索性能的大变异操作[J]. 控制理论与应用, 2016, 15(3): 404–408
MA Junshui. Big mutation operation for improving search performance of genetic algorithm[J]. Control theory and applications, 2016, 15(3): 404–408
[18] WANG Y, ZHOU R, WEN C. Robust load-frequency controller design for power systems[C]//IEE proceedings C (Generation, Transmission and Distribution). IET Digital Library, 1993, 140(1): 11-16.
[19] TAN W. Tuning of PID load frequency controller for power systems[J]. Energy conversion and management, 2009, 50(6): 1465–1472.
[20] ALI E S, ABD-ELAZIM S M. Bacteria foraging optimization algorithm based load frequency controller for interconnected power system[J]. International journal of electrical power & energy systems, 2011, 33(3): 633–638.
[21] 刘永娟, 米阳, 吴晓. 单域时滞电力系统的滑模负荷频率控制[J]. 上海电力学院学报, 2015, 31(3): 293–298
LIU Yongjuan, MI Yang, WU Xiao. The sliding mode load frequency control of single area time delay power system[J]. Journal of Shanghai University of Electric Power, 2015, 31(3): 293–298
[22] 张彬文, 谭文, 李健. 水轮机负荷频率控制系统的线性自抗扰整定[J]. 电机与控制学报, 2019(1): 117–124
ZHANG Binwen, TAN Wen, LI Jian. Tuning of linear active disturbance rejection control for load frequency control systems with hydro turbines[J]. Electric machines and control, 2019(1): 117–124
相似文献/References:
[1]陈增强,刘俊杰,孙明玮.一种新型控制方法—自抗扰控制技术及其工程应用综述[J].智能系统学报,2018,13(6):865.[doi:10.11992/tis.201711029]
 CHEN Zengqiang,LIU Junjie,SUN Mingwei.Overview of a novel control method: active disturbance rejection control technology and its practical applications[J].CAAI Transactions on Intelligent Systems,2018,13(1):865.[doi:10.11992/tis.201711029]
[2]任佳,陈增强,孙明玮,等.PI型自抗扰广义预测控制的性能分析[J].智能系统学报,2021,16(1):66.[doi:10.11992/tis.202006041]
 REN Jia,CHEN Zengqiang,SUN Mingwei,et al.Performance analysis of PI-type active disturbance rejection generalized predictive control[J].CAAI Transactions on Intelligent Systems,2021,16(1):66.[doi:10.11992/tis.202006041]

备注/Memo

收稿日期:2019-06-14。
基金项目:国家自然科学基金项目(61973175,61573197,61973172)
作者简介:陈增强,教授,博士生导师,主要研究方向为智能控制、预测控制、自抗扰控制。曾获得天津市自然科学二等奖。发表学术论文200余篇;黄朝阳,硕士研究生,主要研究方向为自抗扰控制、智能控制、预测控制;孙明玮,教授,主要研究方向为飞行器制导与控制、自抗扰控制。曾获得国防科工委科技进步二等奖
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134