[1]何强,张娇阳.核对齐多核模糊支持向量机[J].智能系统学报,2019,14(06):1163-1169.[doi:10.11992/tis.201904050]
 HE Qiang,ZHANG Jiaoyang.Kernel-target alignment multi-kernel fuzzy support vector machine[J].CAAI Transactions on Intelligent Systems,2019,14(06):1163-1169.[doi:10.11992/tis.201904050]
点击复制

核对齐多核模糊支持向量机(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年06期
页码:
1163-1169
栏目:
出版日期:
2019-11-05

文章信息/Info

Title:
Kernel-target alignment multi-kernel fuzzy support vector machine
作者:
何强 张娇阳
北京建筑大学 理学院, 北京 100044
Author(s):
HE Qiang ZHANG Jiaoyang
School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
关键词:
核函数支持向量机粗糙集理论监督学习模糊分类模糊隶属函数鲁棒性噪声
Keywords:
kernelssupport vector machinesrough set theorysupervised learningfuzzy classificationfuzzy set membership functionsrobustnessnoise
分类号:
TP181
DOI:
10.11992/tis.201904050
摘要:
支持向量机(SVMs)是当前被广泛使用的机器学习技术,其通过最优分割超平面来提高分类器的泛化能力,在实际应用中表现优异。然而SVM也存在易受噪声影响,以及核函数选择等难题。针对以上问题,本文将基于核对齐的多核学习方法引入到模糊支持向量机(fuzzy support vector machine, FSVM)中,提出了模糊多核支持向量机模型(multiple kernel fuzzy support vector machine,MFSVM)。MFSVM通过模糊粗糙集方法计算每一样例隶属度;其次,利用核对齐的多核方法计算每一单核权重,并将组合核引入到模糊支持向量机中。该方法不仅提高了支持向量机的抗噪声能力,也有效避免了核选择难题。在UCI数据库上进行实验,结果表明本文所提方法具有较高的分类精度,验证了该方法的可行性与有效性。
Abstract:
Support vector machines (SVMs) are widely used machine learning techniques. They are used to construct an optimal hyper-plane and have an extraordinary generalization capability and good performance. However, SVMs are sensitive to noise, and it is difficult to select an appropriate kernel for SVMs. In this paper, we introduce kernel-target alignment-based multi-kernel learning method into fuzzy support vector machine (FSVM) and propose the kernel-target alignment-based multi-kernel fuzzy support vector machine (MFSVM). First, we assign the corresponding membership degree to each sample point by the fuzzy rough set method, and then calculate the kernel weight by the multi-kernel learning based on the kernel alignment. Then, the combined kernel is introduced into the fuzzy SVM. The proposed method not only improves the anti-noise ability of the SVM but also effectively avoids the problem of kernel selection. Experiments on nine datasets of the UCI database show that the proposed method has a high classification accuracy, which verifies its feasibility and effectiveness.

参考文献/References:

[1] VAPNIK V N. The nature of statistical learning theory[M]. 2nd ed. New York:Springer-Verlag, 1999:69-110.
[2] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009:115-132.
[3] LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2):464-471.
[4] SIAHROUDI S K, MOODI P Z, BEIGY H. Detection of evolving concepts in non-stationary data streams:a multiple kernel learning approach[J]. Expert systems with applications, 2018, 91:187-197.
[5] GONEN M, ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of machine learning research, 2011, 12:2211-2268.
[6] CRISTIANINI N, SHAWE-TAYLOR J, ELISSEEFF A, et al. On kernel-target alignment[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:367-373.
[7] HE Qiang, WU Congxin. Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets[J]. Soft computing, 2011, 15(6):1105-1114.
[8] LIN Chunfu, WANG Shengde. Training algorithms for fuzzy support vector machines with noisy data[J]. Pattern recognition letters, 2004, 25(14):1647-1656.
[9] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge:Cambridge University Press, 2000:1-28.
[10] DE DIEGO I M, MU?OZ A, MOGUERZA J M. Methods for the combination of kernel matrices within a support vector framework[J]. Machine learning, 2010, 78(1/2):137-174.
[11] CHRISTOUDIAS C M, URTASUN R, DARRELL T. Bayesian localized multiple kernel learning. Technical Report No. UCB/EECS-2009-96[R]. Berkeley:University of California, 2009:1531-1565.
[12] BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions[J]. Bioinformatics, 2005, 21(S1).
[13] QIU Shibin, LANE T. A Framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2009, 6(2):190-199.
[14] VARMA M, RAY D. Learning the discriminative power-invariance trade-off[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007:1-8.
[15] 杜海洋. 简化多核支持向量机的研究[D]. 北京:北京交通大学, 2015:13-25. DU Haiyang. Research of reduced multiple kernel support vector machine[D]. Beijing:Beijing Jiaotong University, 2015:13-25.
[16] WANG Tinghua, ZHAO Dongyan, TIAN Shengfeng. An overview of kernel alignment and its applications[J]. Artificial intelligence review, 2015, 43(2):179-192.
[17] ZHONG Shangping, CHEN Daya, XU Qianfen, et al. Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification[J]. Pattern recognition, 2013, 46(7):2045-2054.
[18] 刘向东, 骆斌, 陈兆乾. 支持向量机最优模型选择的研究[J]. 计算机研究与发展, 2005, 42(4):576-581 LIU Xiangdong, LUO Bin, CHEN Zhaoqian. Optimal model selection for support vector machines[J]. Journal of computer research and development, 2005, 42(4):576-581
[19] 周炜, 周创明, 史朝辉, 等. 粗糙集理论及应用[M]. 北京:清华大学出版社, 2015:57-64.
[20] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2/3):191-209.
[21] DUBOIS D, PRADE H. Putting rough sets and fuzzy sets together[M]//S?OWI?SKI R. Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht, Netherlands:Springer, 1992:203-232.
[22] CHEN Degang, YANG Yongping, WANG Hui. Granular computing based on fuzzy similarity relations[J]. Soft computing, 2011, 15(6):1161-1172.
[23] CHEN Linlin, CHEN Degang, WANG Hui. Alignment based kernel selection for multi-label learning[J]. Neural processing letters, 2019, 49(3):1157-1177.

相似文献/References:

[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(06):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(06):467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(02):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4(06):157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(06):69.
[4]吴 青,刘三阳,郑 巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(02):74.
 WU Qing,LIU San-yang,ZHENG Wei.Support vector machines based on multiplicative updates[J].CAAI Transactions on Intelligent Systems,2007,2(06):74.
[5]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(02):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2(06):83.
[6]赵春晖,陈万海,万 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(01):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(06):77.
[7]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(04):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3(06):361.
[8]刘 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(03):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(06):199.
[9]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(02):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5(06):144.
[10]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(04):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5(06):327.

备注/Memo

备注/Memo:
收稿日期:2019-04-20。
基金项目:国家自然科学基金项目(61473111);北京建筑大学科学研究基金项目(KYJJ2017017).
作者简介:何强,男,1977年生,副教授,主要研究方向为多核学习、监督学习、确定性信息处理。主持国家自然基金、河北省自然基金等多项。发表学术论文30余篇;张娇阳,女,1993年生,硕士,主要研究方向为多核学习、支持向量机。参与国家基金项目1项,发表学术论文3篇。
通讯作者:何强.E-mail:heqiang@bucea.edu.cn
更新日期/Last Update: 2019-12-25