[1]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,(02):144-149.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,(02):144-149.
点击复制

SVM性能的免疫鱼群多目标优化研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2010年02期
页码:
144-149
栏目:
出版日期:
2010-04-25

文章信息/Info

Title:
Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance
文章编号:
1673-4785(2010)02-0144-06
作者:
刘 胜1李高云12江 娜1
1.哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001;
2.中国船舶重工集团公司第七O七研究所九江分部,江西 九江 332007
Author(s):
LIU Sheng1 LI Gao-yun12 JIANG Na1
1.College of Automation,Harbin Engineering University, Harbin 150001,China;
2.Jiujiang Branch of 707 Research Institute,China Shipbuilding Industry Corporation, Jiujiang 332007,China
关键词:
支持向量机 多目标优化 Pareto近似解集 免疫鱼群算法
Keywords:
support vector machines multiobjective optimization Pareto approximate solution set immune fish swarm algorithm
分类号:
TP183
文献标志码:
A
摘要:
SVM算法的训练精度和训练速度是衡量其性能的2个重要指标.以这2个指标为目标变量建立SVM性能多目标优化问题的数学模型,采用直接对多个目标同时进行优化的方法求得问题的Pareto近似解集.在求解Pareto近似解集时,将免疫原理中的浓度机制引入基本鱼群算法中,形成一种改进的免疫鱼群算法.以非线性动态系统仿真数据为样本数据,并采用改进的免疫鱼群算法求解SVM性能多目标优化问题的Pareto近似解集.仿真结果表明,在解决多目标优化问题时,免疫鱼群算法相对于基本鱼群算法和遗传算法具有更好的优越性.
Abstract:
Accuracy and speed when training a support vector machine (SVM) algorithm provides critical measurements of the algorithm’s performance. To optimize performance, a mathematical model of multiobjective optimization with improvements in these two parameters as goals was established. A Pareto approximate solution set was obtained by optimizing multiple targets simultaneously. In the process of finding the Pareto approximate solution set, a concentration mechanism from an immune algorithm was introduced into the basic artificial fish swarm algorithm. This produced significant improvements and resulted in the proposed immune fish swarm algorithm. Taking the nonlinear dynamic system simulation data as sample data, a Pareto approximate solution set of multiobjective optimization of SVM performance was obtained using the improved algorithm. Simulation results showed that, for solving multiobjective optimization, the immune fish swarm algorithm was superior to both a basic artificial fish swarm algorithm and to genetic algorithms. 

参考文献/References:

[1]刘 胜,李妍妍.基于支持向量机的锅炉过热系统建模研究[J].热能动力工程, 2007,22(1):3841.
LIU Sheng, LI Yanyan. A study of the modeling of a boiler superheating system based on a supportive vector machine[J]. Journal of Engineering for Thermal Energy and Power,2007,22(1):3841.
[2]APNIK V N.The nature of statistical learning theory[M].New York: SpringerVerlag,1995:2435.
 [3]SHELOKAR P S, ADHIKARI S, VAKIL R, JAYARAMAN V K.Multiobjective ant algorithm:combination of strength Pareto fitness assignment and thermodynamic clustering[J].Foundations of Computing and Decision Sciences,2000,25(4):213229.
[4]COELLO C A C,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transaction on Evolutionary Computation,2004,8(3):256279.
[5]李晓磊.一种新型的智能优化方法—人工鱼群算法[D].杭州: 浙江大学, 2003.
 LI Xiaolei. A new intelligent optimization methodartificial fish school algorithm[D].Hangzhou: Zhejiang University,2003.
[6]张梅凤,邵 诚,甘 勇.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):13811385.
ZHANG Meifeng, SHAO Cheng, GAN Yong. Hybrid artificial fish swarm optimization algorithm based on mutation operator and simulated annealing[J]. Acta Electronica Sinica,2006, 34(8):13811385.
[7]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2002:2758.
[8]张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003,37(6):927930.
ZHANG Haoran, HAN Zhengzhi, LI Changgang. Support vector machine based unknown nonlinear systems identification and control[J].Journal of Shanghai Jiaotong University, 2003,37(6):927930.
[9]VELDHUIZEN D A V, LAMONT G B. On measuring multiobjective. evolutionary algorithm performance[C]//Proceedings of the 2000 Congress on Evolutionary Computation. California, CA, USA,2000:204211.
[10]TAN K, LEE T, KHOR E. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2001,7 (3):565588.
 [11]KAPUR J, KESAVAN H. Entropy optimization principles with applications[M]. San Diego: Academic Press,1992:214258.

相似文献/References:

[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,(06):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,(02):467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,(02):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,(02):157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,(02):69.
[4]吴 青,刘三阳,郑 巍.基于乘性规则的支持向量机[J].智能系统学报,2007,(02):74.
 WU Qing,LIU San-yang,ZHENG Wei.Support vector machines based on multiplicative updates[J].CAAI Transactions on Intelligent Systems,2007,(02):74.
[5]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,(02):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,(02):83.
[6]赵春晖,陈万海,万 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,(01):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,(02):77.
[7]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,(04):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,(02):361.
[8]刘 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,(03):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,(02):199.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,(04):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,(02):327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,(03):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,(02):261.

备注/Memo

备注/Memo:
收稿日期:2009-03-24.
基金项目:黑龙江省自然科学基金资助项目(A200419).
通信作者:刘 胜.E-mail:liu.sch@163.com.
作者简介:
刘 胜,男,1957年生,教授,博士生导师,黑龙江省教学名师,国防科技工业“511人才工程”学术带头人,黑龙江省重点一级学科“控制科学与工程”学科负责人.兼任教育部工程研究中心“船舶控制工程研究中心”主任,中国造船学会仪器仪表学术委员会副主任,黑龙江省自动化学会副理事长.主要研究方向为智能控制、鲁棒控制、船舶航行与姿态控制.目前承担国家“973”计划项目,国防基础研究基金项目、国防预研项目4项,省部级项目6项.曾获黑龙江省优秀教学工作者、中国船舶工业总公司优秀青年科技工作者、获省部级科学技术奖7项、获省教学成果奖一等奖2项,二等奖2项、获省教育科学研究成果一等奖4项、获省部级自然科学技术学术成果奖8项.发表学术论文150余篇,被SCI、EI、ISTP检索70余篇,出版学术著作3部.
李高云,男,1981年生,博士研究生,主要研究方向为智能控制、故障诊断与容错控制、船舶航行与姿态控制.参与科研项目3项,获黑龙江省科学技术二等奖1项,黑龙江省高校科学技术一等奖1项,发表学术论文近10篇,被EI、ISTP检索4篇.
 江 娜,女,1981年生,博士研究生,主要研究方向为故障诊断与故障预报.参与科研项目2项,发表学术论文近10篇,被EI、ISTP检索5篇.
更新日期/Last Update: 2010-05-24