字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 重新找回人工智能的可解释性-《智能系统学报》

[1]何华灿.重新找回人工智能的可解释性[J].智能系统学报,2019,14(03):393-412.[doi:10.11992/tis.201810020]
 HE Huacan.Refining the interpretability of artificial intelligence[J].CAAI Transactions on Intelligent Systems,2019,14(03):393-412.[doi:10.11992/tis.201810020]
点击复制

重新找回人工智能的可解释性(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年03期
页码:
393-412
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Refining the interpretability of artificial intelligence
作者:
何华灿
西北工业大学 计算机学院, 陕西 西安 710072
Author(s):
HE Huacan
School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
人工智能可解释性演化不确定性泛逻辑学柔性命题逻辑柔性神经元数理辩证逻辑
Keywords:
artificial intelligenceinterpretabilityevolutionuncertaintyuniversal logicflexible propositional logicflexible neuronsmathematical dialectic logic
分类号:
TP18
DOI:
10.11992/tis.201810020
摘要:
针对深度神经网络AI研究的可解释性瓶颈,指出刚性逻辑(数理形式逻辑)和二值神经元等价,二值神经网络可转换成逻辑表达式,有强可解释性。深度神经网络一味增加中间层数来拟合大数据,没有适时通过抽象把最小粒度的数据(原子)变成粒度较大的知识(分子),再把较小粒度的知识变成较大粒度的知识,把原有的强可解释性淹没在中间层次的汪洋大海中。要支持多粒度的知识处理,需把刚性逻辑扩张为柔性命题逻辑(命题级数理辩证逻辑),把二值神经元扩张为柔性神经元,才能保持强可解释性。本文详细介绍了从刚性逻辑到柔性逻辑的扩张过程和成果,最后介绍了它们在AI研究中的应用,这是重新找回AI研究强可解释性的最佳途径。
Abstract:
In view of the restrictions on the interpretability of artificial intelligence (AI) research on deep neural networks, it is indicated that rigid logic (mathematical formal logic) and binary neurons are equivalent. Moreover, a binary neural network can be converted into a logical expression, which is highly interpretable. The deep neural network blindly increases the number of intermediate layers to fit big data without the timely abstraction of data with the smallest granularity (atom) into knowledge with larger granularity (molecule), changes knowledge with smaller granularity into knowledge with larger granularity, and submerges the original strong explanatory power in the ocean of intermediate layers. To support knowledge processing of multiple granularities, rigid logic should be expanded into flexible propositional logic (proposition-level mathematical dialectic logic) and binary neurons should be expanded into flexible neurons to maintain the strong explanatory power. This paper introduces in detail the achievement of the expansion process from rigid logic to flexible logic and its application in AI research, which is the best method to recover the interpretability of AI.

参考文献/References:

[1] 何华灿. 人工智能导论[M]. 西安:西北工业大学出版社, 1988. 11-15
[2] 何华灿. 泛逻辑学理论:机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018, 13(1):19-36 HE Huacan. Universal logic theory:logical foundation of mechanism-based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1):19-36
[3] 何华灿, 何智涛. 从逻辑学的观点看人工智能学科的发展[M]//. 涂序彦. 人工智能:回顾与展望. 北京:科学出版社, 2006:77-111.
[4] 谭铁牛. 人工智能:天使还是魔鬼?[EB/OL]. (2018-06-13)[2019-04-10]. http://www.sohu.com/a/235446077_453160.
[5] 何华灿, 王华, 刘永怀, 等. 泛逻辑学原理[M]. 北京:科学出版社, 2001.
[6] HE Huacan, WANG Hua, LIU Yonghuai, et al. Principle of universal logics[M]. Beijing:Science Press, 2006.
[7] HE Huacan. The outline on continuous-valued logic algebra[J]. International journal of advanced intelligence, 2012, 4(1):1-30.
[8] 张文修. 不确定性推理原理[M]. 西安:西安交通大学出版社, 1996.
[9] 伊利亚·普里高津. 确定性的终结:时间、混沌与新自然法则[M]. 湛敏, 译. 上海:上海科技教育出版社, 1998:1-12
[10] 张金成. 逻辑及数学演算中的不动项与不可判定命题(I)[J]. 智能系统学报, 2014, 9(4):499-510 ZHANG Jincheng. Fixed terms and undecidable propositions in logical and mathematical calculus (I)[J]. CAAI transactions on intelligent systems, 2014, 9(4):499-510
[11] 何华灿. S型超协调逻辑中的一项重大研究突破:评张金成《逻辑及数学演算中的不动项与不可判定命题》[J]. 智能系统学报, 2014, 9(4):511-514
[12] 张金成. 悖论、逻辑与非Cantor集合论[M]. 哈尔滨工业大学出版社, 2018.
[13] 钟义信. 机制主义人工智能理论:一种通用的人工智能理论[J]. 智能系统学报, 2018, 13(1):2-18 ZHONG Yixin. Mechanism-based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1):2-18
[14] 汪培庄. 因素空间理论:机制主义人工智能理论的数学基础[J]. 智能系统学报, 2018, 13(1):37-54 WANG Peizhuang. Factor space-mathematical basis of mechanism based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1):37-54

相似文献/References:

[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(01):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4(03):1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(06):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3(03):476.
[3]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(01):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1(03):9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(01):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1(03):38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(02):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1(03):16.
[6]秦裕林,朱新民,朱 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(02):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1(03):11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(01):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2(03):1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(03):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(03):8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(05):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2(03):20.
[10]王志良,杨 溢,杨 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(06):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4(03):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

备注/Memo:
收稿日期:2018-10-17。
基金项目:国家自然科学基金面上项目(60273087);西北工业大学基础研究基金重点项目(W18101).
作者简介:何华灿,男,1938年生,教授,博士生导师,主要研究方向为计算机科学和人工智能基础理论,创立泛逻辑理论和柔性神经元原理,近期主要研究广义概率论和数理辩证逻辑及其在智能信息处理中的应用。主持完成国家和省部级自然科学基金项目8项,9次获得省部级科技进步奖。发表学术论文160余篇,出版专著9部。
通讯作者:何华灿.E-mail:hehuac@nwpu.edu.cn
更新日期/Last Update: 1900-01-01