[1]王雪平,林甲祥,巫建伟,等.基于可决系数的自适应关联规则挖掘算法[J].智能系统学报,2020,15(2):352-359.[doi:10.11992/tis.201809030]
 WANG Xueping,LIN Jiaxiang,WU Jianwei,et al.Adaptive-association-rule mining algorithm based on determination coefficient[J].CAAI Transactions on Intelligent Systems,2020,15(2):352-359.[doi:10.11992/tis.201809030]
点击复制

基于可决系数的自适应关联规则挖掘算法

参考文献/References:
[1] MALIK M, MAMTA, AGARWAL R P. A survey on association rule mining[J]. International journal of research in engineering and applied sciences, 2015, 5(6): 48-56.
[2] XI Jianfeng, ZHAO Zhonghao, LI Wei, et al. A traffic accident causation analysis method based on AHP-apriori[J]. Procedia engineering, 2016, 137: 680-687.
[3] ALWIDIAN J, HAMMO B H, OBEID N. WCBa: weighted classification based on association rules algorithm for breast cancer disease[J]. Applied soft computing, 2018, 62: 536-549.
[4] 张良均, 杨坦, 肖刚, 等. MATLAB数据分析与挖掘实战[M]. 北京: 机械工业出版社, 2016.
[5] SCHEFFER T. Finding association rules that trade support optimally against confidence[C]//European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg, 2001: 424-435.
[6] AL-MAQALEH B M, SHAAB S K. Efficient algorithm for mining association rules using confident frequent itemsets[C]//Third International Conference on Advanced Computing and Communication Technologies. Rohtak, India, 2013.
[7] 吴华瑞, 张凤霞, 赵春江. 一种多重最小支持度关联规则挖掘算法[J]. 哈尔滨工业大学学报, 2008, 40(9): 1447-1451
WU Huarui, ZHANG Fengxia, ZHAO Chunjiang. An algorithm for mining association rules with multiple minimum supports[J]. Journal of Harbin Institute of Technology, 2008, 40(9): 1447-1451
[8] 陈柳, 冯山. 正负关联规则两级置信度阈值设置方法[J]. 计算机应用, 2018, 38(5): 1315-1319, 1338
CHEN Liu, FENG Shan. Two-level confidence threshold setting method for positive and negative association rules[J]. Journal of computer applications, 2018, 38(5): 1315-1319, 1338
[9] 于海燕. 最小相关度优化PNARC算法的审计数据关联规则挖掘模型[J]. 科技通报, 2017, 33(12): 158-161
YU Haiyan. Research on audit data association rule mining model with minimal relevance optimized PNARC algorithm[J]. Bulletin of science and technology, 2017, 33(12): 158-161
[10] 董博, 王雪. 关联规则算法的计算效率优化研究[J]. 计算机仿真, 2017, 34(9): 247-253
DONG Bo, WANG Xue. Closure operator based post processing minimum single constraint association[J]. Computer simulation, 2017, 34(9): 247-253
[11] LI Jundong, ZAIANE O. Exploiting statistically significant dependent rules for associative classification[J]. Intelligent data analysis, 2017, 21(5): 1155-1172.
[12] Qodmanan H R, Nasiri M, Minaei-Bidgoli B. Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence[J]. Expert systems with applications, 2011, 38(1): 288-298.
[13] SARATH K N V D, RAVI V. Association rule mining using binary particle swarm optimization[J]. Engineering applications of artificial intelligence, 2013, 26(8): 1832-1840.
[14] 吴琼, 曾庆鹏. 基于多目标烟花算法的关联规则挖掘[J]. 模式识别与人工智能, 2017, 30(4): 365-376
WU Qiong, ZENG Qingpeng. Association rules mining based on multi-objective fireworks optimization algorithm[J]. Pattern recognition and artificial intelligence, 2017, 30(4): 365-376
[15] A. S. 1, X. D. 1, J. C. 2, et al. Multi-objective associati-on rule mining with binary bat algorithm[M]. School of Computer Engineering and Science, Shanghai University, Shanghai, China. Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, USA, 2016: 105-128.
[16] CAN U, ALATAS B. Automatic mining of quantitative association rules with gravitational search algorithm[J]. International journal of software engineering and knowledge engineering, 2017, 27(3): 343-372.
[17] 王志愿, 夏士雄, 张磊, 等. 语义驱动的关联规则挖掘算法研究[J]. 计算机工程与设计, 2011, 32(3): 936-939, 944
WANG Zhiyuan, XIA Shixiong, ZHANG Lei, et al. Study on semantic-driven association rule mining algorithm[J]. Computer engineering and design, 2011, 32(3): 936-939, 944
[18] MALLIK S, BHADRA T, MUKHERJI A. DTFP-growth: dynamic threshold-based FP-growth rule mining algorithm through integrating gene expression, methylation, and protein-protein interaction profiles[J]. IEEE transactions on nanobioscience, 2018, 17(2): 117-125.
[19] AGRAWAL J, AGRAWAL S, SINGHAI A, et al. SET-PSO-based approach for mining positive and negative association rules[J]. Knowledge and information systems, 2015, 45(2): 453-471.
[20] 林甲祥, 巫建伟, 陈崇成, 等. 支持度和置信度自适应的关联规则挖掘[J]. 计算机工程与设计, 2018, 39(12): 3746-3754
LIN Jiaxiang, WU Jianwei, CHEN Chongcheng, et al. Association rule mining algorithm with adaptive support and confidence[J]. Computer engineering and design, 2018, 39(12): 3746-3754
相似文献/References:
[1]周亦鹏,杜军平.基于关联词的主题模型语义标注[J].智能系统学报,2012,7(4):327.
 ZHOU Yipeng,DU Junping.Semantic tagging of a topic model based on associated words[J].CAAI Transactions on Intelligent Systems,2012,7():327.
[2]梁路,王彪,王剑辉,等.基于细精度关联规则挖掘的电信客户流失分析[J].智能系统学报,2015,10(3):407.[doi:10.3969/j.issn.1673-4785.201404050]
 LIANG Lu,WANG Biao,WANG Jianhui,et al.Analysis of telecom customer churn based on fine-grained association rule mining[J].CAAI Transactions on Intelligent Systems,2015,10():407.[doi:10.3969/j.issn.1673-4785.201404050]
[3]胡小康,王俊红.基于相容模糊概念的规则提取方法[J].智能系统学报,2016,11(3):352.[doi:10.11992/tis.201603043]
 HU Xiaokang,WANG Junhong.Research on rule extraction method based on compatibility fuzzy concept[J].CAAI Transactions on Intelligent Systems,2016,11():352.[doi:10.11992/tis.201603043]
[4]李海林,龙芳菊.基于同步频繁树的时间序列关联规则分析[J].智能系统学报,2021,16(3):502.[doi:10.11992/tis.202008012]
 LI Hailin,LONG Fangju.Association rules analysis of time series based on synchronization frequent tree[J].CAAI Transactions on Intelligent Systems,2021,16():502.[doi:10.11992/tis.202008012]

备注/Memo

收稿日期:2018-09-15。
基金项目:国家自然科学基金项目(41401458);福建省自然科学基金项目(2018J01644,2018J01645,2016J01753);中国-东盟海上合作基金项目(2020399);国家海洋局第三海洋研究所项目(2016020);福建省中青年教师教育科研项目(JT180129)
作者简介:王雪平,讲师,主要研究方向为数据挖掘、模式识别。主持省级科研项目1项,参与省级科研项目10余项;林甲祥,博士。主要研究方向为空间数据挖掘、人工智能和大数据。主持国家级和省部级科研项目4项,参与省部级科研项目20余项;获福建省科学技术奖二等奖1项,获国家发明专利授权2项,获国家计算机软件著作权登记5项。发表学术论文40 余篇;巫建伟,工程师,博士。主要研究方向为海洋环境管理信息系统、空间数据挖掘、海洋大数据分析。主持或参与国家级和省部级科研项目10余项。发表学术论文10余篇。
通讯作者:王雪平,E-mail:gggfvgu@163.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134