[1]王一宾,李田力,程玉胜.结合谱聚类的标记分布学习[J].智能系统学报,2019,14(05):966-973.[doi:10.11992/tis.201809019]
 WANG Yibin,LI Tianli,CHENG Yusheng.Label distribution learning based on spectral clustering[J].CAAI Transactions on Intelligent Systems,2019,14(05):966-973.[doi:10.11992/tis.201809019]
点击复制

结合谱聚类的标记分布学习(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
966-973
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Label distribution learning based on spectral clustering
作者:
王一宾12 李田力1 程玉胜12
1. 安庆师范大学 计算机与信息学院, 安徽 安庆 246011;
2. 安徽省高校智能感知与计算重点实验室, 安徽 安庆 246011
Author(s):
WANG Yibin12 LI Tianli1 CHENG Yusheng12
1. School of Computer and Information, Anqing Normal University, Anqing 246011, China;
2. Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing 246011, China
关键词:
谱聚类标记分布学习相似度矩阵拉普拉斯变换K-均值参数模型标记分布机器学习
Keywords:
spectral clusteringlabel distribution learningsimilarity matrixLaplace transformK-meansparametric modellabel distributionmachine learning
分类号:
TP181
DOI:
10.11992/tis.201809019
摘要:
标记分布是一种新的学习范式,现有算法大多数直接使用条件概率建立参数模型,未充分考虑样本之间的相关性,导致计算复杂度增大。基于此,引入谱聚类算法,通过样本之间相似性关系将聚类问题转化为图的全局最优划分问题,进而提出一种结合谱聚类的标记分布学习算法(label distribution learning with spectral clustering,SC-LDL)。首先,计算样本相似度矩阵;然后,对矩阵进行拉普拉斯变换,构造特征向量空间;最后,通过K-means算法对数据进行聚类建立参数模型,预测未知样本的标记分布。与现有算法在多个数据集上的实验表明,本算法优于多个对比算法,统计假设检验进一步说明算法的有效性和优越性。
Abstract:
Label distribution is a new learning paradigm. Most of the existing algorithms use conditional probability to build parametric models but do not consider the links between samples fully, which increases computational complexity. On this basis, the spectral clustering algorithm is introduced to transform the clustering problem into the global optimum graph partitioning problem based on the similarity relation between samples. Thus, a label distribution learning algorithm combined with spectral clustering (SC-LDL) is proposed. First, we calculate the similarity matrix of the samples. Then, we transform the matrix using the Laplace transform to construct the feature vector space. Finally, we cluster the data to establish the parameter model with K-means algorithm and use this new model to predict the label distribution of unknown samples. The comparison between SC-LDL and the existing algorithm on multiple data sets shows that this algorithm is superior to multiple contrast algorithms. Furthermore, statistical hypothesis testing illustrates the effectiveness and superiority of the SC-LDL algorithm.

参考文献/References:

[1] ZHOU Zhihua, ZHANG Minling. Multi-label learning[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning and Data Mining. Boston, MA:Springer, 2017:875–881.
[2] 王一宾, 程玉胜, 裴根生. 结合均值漂移的多示例多标记学习改进算法[J]. 南京大学学报(自然科学版), 2018, 54(2):422-435 WANG Yibin, CHENG Yusheng, PEI Gensheng. Improved algorithm for multi-instance multi-label learning based on mean shift[J]. Journal of Nanjing University (Natural Science), 2018, 54(2):422-435
[3] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
[4] GENG Xin. Label distribution learning[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7):1734-1748.
[5] 季荣姿. 标记分布学习及其应用[D]. 南京:东南大学, 2014. JI Rongzi. Label distribution learning and its applications[D]. Nanjing:Southeast University, 2014.
[6] GENG Xin, HOU Peng. Pre-release prediction of crowd opinion on movies by label distribution learning[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:3511?3517.
[7] GENG Xin, YIN Chao, ZHOU Zhihua. Facial age estimation by learning from label distributions[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(10):2401-2412.
[8] GENG Xin, XIA Yu. Head pose estimation based on multivariate label distribution[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1837–1842.
[9] 伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(6A):491-499, 524 WU Yuhong. General overview on clustering algorithms[J]. Computer science, 2015, 42(6A):491-499, 524
[10] GENOLINI C, FALISSARD B. KmL:k-means for longitudinal data[J]. Computational statistics, 2010, 25(2):317-328.
[11] ZHOU Jin, CHEN Long, CHEN C L P, et al. Fuzzy clustering with the entropy of attribute weights[J]. Neurocomputing, 2016, 198:125-134.
[12] ZHANG Minling. Lift:multi-label learning with label-specific features[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011:1609?1614.
[13] 邵东恒, 杨文元, 赵红. 应用k-means算法实现标记分布学习[J]. 智能系统学报, 2017, 12(3):325-332 SHAO Dongheng, YANG Wenyuan, ZHAO Hong. Label distribution learning based on k-means algorithm[J]. CAAI transactions on lntelligent systems, 2017, 12(3):325-332
[14] 管涛, 杨婷. 谱聚类广义模型与典型算法分析[J]. 模式识别与人工智能, 2014, 27(11):1015-1025 GUAN Tao, YANG Ting. Analysis of general model and classical algorithms for spectral clustering[J]. Pattern recognition and artificial intelligence, 2014, 27(11):1015-1025
[15] ZELNIK-MANOR L, PERONA P. Self-tuning spectral clustering[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Cambridge, USA, 2004:1601?1608.
[16] CAI Deng, CHEN Xinlei. Large Scale spectral clustering via landmark-based sparse representation[J]. IEEE transactions on cybernetics, 2015, 45(8):1669-1680.
[17] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge, USA, 2001:849–856.
[18] YANG Yifang, WANG Yuping, XUE Xingsi. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1):161-167.
[19] WANG Sheng, LU Jianfeng, GU Xingjian, et al. Unsupervised discriminant canonical correlation analysis based on spectral clustering[J]. Neurocomputing, 2016, 171:425-433.
[20] LI Xinye, GUO Lijie. Constructing affinity matrix in spectral clustering based on neighbor propagation[J]. Neurocomputing, 2012, 97:125-130.
[21] 赵权, 耿新. 标记分布学习中目标函数的选择[J]. 计算机科学与探索, 2017, 11(5):708-719 ZHAO Quan, GENG Xin. Selection of target function in label distribution learning[J]. Journal of frontiers of computer science and technology, 2017, 11(5):708-719
[22] 耿新, 徐宁, 邵瑞枫. 面向标记分布学习的标记增强[J]. 计算机研究与发展, 2017, 54(6):1171-1184 GENG Xin, XU Ning, SHAO Ruifeng. Label enhancement for label distribution learning[J]. Journal of computer research and development, 2017, 54(6):1171-1184

相似文献/References:

[1]汪 中,刘贵全,陈恩红.基于模糊K-harmonic means的谱聚类算法[J].智能系统学报,2009,4(02):95.
 WANG Zhong,LIU Gui-quan,CHEN En-hong.A spectral clustering algorithm based on fuzzy Kharmonic means[J].CAAI Transactions on Intelligent Systems,2009,4(05):95.
[2]张伟伟,薄 华,王晓峰.多特征-谱聚类的SAR图像溢油分割[J].智能系统学报,2010,5(06):551.
 ZHANG Wei-wei,BO Hua,WANG Xiao-feng.SAR oil spill image segmentationbased on a multispectral clustering algorithm[J].CAAI Transactions on Intelligent Systems,2010,5(05):551.
[3]林大华,杨利锋,邓振云,等.稀疏样本自表达子空间聚类算法[J].智能系统学报,2016,11(5):696.[doi:10.11992/tis.201601005]
 LIN Dahua,YANG Lifeng,DENG Zhenyun,et al.Sparse sample self-representation for subspace clustering[J].CAAI Transactions on Intelligent Systems,2016,11(05):696.[doi:10.11992/tis.201601005]
[4]赵晓晓,周治平.结合稀疏表示与约束传递的半监督谱聚类算法[J].智能系统学报,2018,13(05):855.[doi:10.11992/tis.201703013]
 ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13(05):855.[doi:10.11992/tis.201703013]
[5]储德润,周治平.公理化模糊共享近邻自适应谱聚类算法[J].智能系统学报,2019,14(05):897.[doi:10.11992/tis.201810002]
 CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14(05):897.[doi:10.11992/tis.201810002]

备注/Memo

备注/Memo:
收稿日期:2018-09-13。
基金项目:安徽省高校重点科研项目(KJ2017A352).
作者简介:王一宾,男,1970年生,教授,主要研究方向为多标记学习、机器学习和软件安全。发表学术论文40余篇;李田力,男,1996年生,硕士研究生,主要研究方向为标记分布学习;程玉胜,男,1969年生,教授,博士,主要研究方向为数据挖掘、粗糙集。发表学术论文90余篇。
通讯作者:程玉胜.E-mail:chengyshaq@163.com
更新日期/Last Update: 1900-01-01