[1]储德润,周治平.公理化模糊共享近邻自适应谱聚类算法[J].智能系统学报,2019,14(05):897-904.[doi:10.11992/tis.201810002]
 CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14(05):897-904.[doi:10.11992/tis.201810002]
点击复制

公理化模糊共享近邻自适应谱聚类算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
897-904
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory
作者:
储德润 周治平
江南大学 物联网技术应用教育部工程研究中心, 江苏 无锡 214122
Author(s):
CHU Derun ZHOU Zhiping
Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi 214122, China
关键词:
机器学习数据挖掘聚类分析模糊聚类谱聚类公理化模糊集理论共享最近邻尺度参数
Keywords:
machine learningdata miningclustering analysisfuzzy clusteringspectral clusteringaxiomatic fuzzy set theoryshared nearest neighborscale parameter
分类号:
TP18
DOI:
10.11992/tis.201810002
摘要:
针对传统的谱聚类算法通常利用高斯核函数作为相似性度量,且单纯以距离决定相似性不能充分表现原始数据中固有的模糊性、不确定性和复杂性,导致聚类性能降低的问题。提出了一种公理化模糊共享近邻自适应谱聚类算法,首先结合公理化模糊集理论提出了一种模糊相似性度量方法,利用识别特征来衡量更合适的数据成对相似性,然后采用共享近邻的方法发现密集区域样本点分布的结构和密度信息,并且根据每个点所处领域的稠密程度自动调节参数σ,从而生成更强大的亲和矩阵,进一步提高聚类准确率。实验表明,相较于距离谱聚类、自适应谱聚类、模糊聚类方法和地标点谱聚类,所提算法有着更好的聚类性能。
Abstract:
For the traditional spectral clustering algorithm, the Gaussian kernel function is usually used as the similarity measure. However, the similarity of distance cannot fully express the ambiguity, uncertainty, and complexity inherent in the original data, resulting in the reduction of clustering performance. To solve this problem, we propose an axiomatic fuzzy set shared nearest neighbor adaptive spectral clustering algorithm. First, the proposed algorithm uses a fuzzy similarity measurement method based on axiomatic fuzzy set theory to measure more suitable data pairwise similarity by identifying features. Then, the structure and density information of sample point distribution in a dense area is obtained using the method of sharing the nearest neighbor, and the parameter σ is automatically adjusted according to the density degree of each point in the domain, thereby generating a more powerful affinity matrix to further increase the accuracy rate of clustering. Experimental results show that the proposed algorithm has better clustering performance than distance spectral clustering, adaptive spectral clustering, fuzzy clustering, and landmark spectral clustering.

参考文献/References:

[1] XU Dongkuan, TIAN Yingjie. A comprehensive survey of clustering algorithms[J]. Annals of data science, 2015, 2(2):165-193.
[2] LIU Hanqiang, ZHAO Feng, JIAO Licheng. Fuzzy spectral clustering with robust spatial information for image segmentation[J]. Applied soft computing, 2012, 12(11):3636-3647.
[3] TUNG F, WONG A, CLAUSI D A. Enabling scalable spectral clustering for image segmentation[J]. Pattern recognition, 2010, 43(12):4069-4076.
[4] ZENG Shan, HUANG Rui, KANG Zhen, et al. Image segmentation using spectral clustering of Gaussian mixture models[J]. Neurocomputing, 2014, 144:346-356.
[5] JIANG J Q, DRESS A W M, YANG Genke. A spectral clustering-based framework for detecting community structures in complex networks[J]. Applied mathematics letters, 2009, 22(9):1479-1482.
[6] FORESTIER G, WEMMERT C. Semi-supervised learning using multiple clusterings with limited labeled data[J]. Information sciences, 2016, 361-362:48-65.
[7] 赵晓晓, 周治平. 结合稀疏表示与约束传递的半监督谱聚类算法[J]. 智能系统学报, 2018, 13(5):855-863 ZHAO Xiaoxiao, ZHOU Zhiping. A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J]. CAAI transactions on intelligent systems, 2018, 13(5):855-863
[8] 林大华, 杨利锋, 邓振云, 等. 稀疏样本自表达子空间聚类算法[J]. 智能系统学报, 2016, 11(5):696-702 LIN Dahua, YANG Lifeng, DENG Zhenyun, et al. Sparse sample self-representation for subspace clustering[J]. CAAI transactions on intelligent systems, 2016, 11(5):696-702
[9] CHANG Yanshuo, NIE Feiping, LI Zhihui, et al. Refined spectral clustering via embedded label propagation[J]. Neural computation, 2017, 29(12):3381-3396.
[10] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:849?856.
[11] YE Xiucai, SAKURAI T. Robust similarity measure for spectral clustering based on shared neighbors[J]. ETRI journal, 2016, 38(3):540-550.
[12] JIA Hongjie, DING Shifei, DU Mingjing. Self-tuning p -spectral clustering based on shared nearest neighbors[J]. Cognitive computation, 2015, 7(5):622-632.
[13] 王雅琳, 陈斌, 王晓丽, 等. 基于密度调整的改进自适应谱聚类算法[J]. 控制与决策, 2014, 29(9):1683-1687 WANG Yalin, CHEN Bin, WANG Xiaoli, et al. Improved adaptive spectral clustering algorithm based on density adjustment[J]. Control and decision, 2014, 29(9):1683-1687
[14] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(8):888-905.
[15] LIU Xiaodong. The fuzzy theory based on AFS algebras and AFS structure[J]. Journal of mathematical analysis and applications, 1998, 217(2):459-478.
[16] LIU Xiaodong, PEDRYCZ W, ZHANG Qingling. Axiomatics fuzzy sets logic[C]//Proceedings of the12th IEEE International Conference on Fuzzy Systems. St Louis, USA, 2003:55-60.
[17] LIU Xiaodong, PEDRYCZ W. Axiomatic fuzzy set theory and its applications[M]. Berlin, Heidelberg:Springer, 2009.
[18] LIU Xiaodong, PEDRYCZ W, CHAI Tianyou, et al. The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets[J]. IEEE transactions on knowledge and data engineering, 2009, 21(3):443-462.
[19] LIU Xiaodong, REN Yan. Novel artificial intelligent techniques via AFS theory:feature selection, concept categorization and characteristic description[J]. Applied soft computing, 2010, 10(3):793-805.
[20] LIU Xiaodong, WANG Xianchang, PEDRYCZ W. Fuzzy clustering with semantic interpretation[J]. Applied soft computing, 2015, 26:21-30.
[21] LIU Xiaodong, WANG Wei, CHAI T. The fuzzy clustering analysis based on AFS theory[J]. IEEE transactions on systems, man, and cybernetics, part B, 2005, 35(5):1013-1027.
[22] ZELNIK-Manor L, PERONA P. Self-tuning spectral clustering[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Pasadena, USA, 2004:1601?1608.
[23] YAN Donghui, HUANG Ling, JORDAN M I. Fast approximate spectral clustering[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:907?916.
[24] LI Mu, KWOK J T, LU Baoliang. Making large-scale nyström approximation possible[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel, 2010:631?638.
[25] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE transactions on cybernetics, 2015, 45(8):1669-1680.
[26] SCHÖLKOPF B, PLATT J, HOFMANN T. A local learning approach for clustering[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Doha, Qatar, 2007:1529?1536.
[27] STREHL A, GHOSH J. Cluster ensembles:a knowledge reuse framework for combining partitionings[C]//Proceedings of the 18th National Conference on Artificial Intelligence. Alberta, Canada, 2003:583–617.

相似文献/References:

[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(02):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,1(05):31.
[2]叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(02):148.
 YE Zhi-fei,WEN Yi-min,LU Bao-liang.A survey of imbalanced pattern classification problems[J].CAAI Transactions on Intelligent Systems,2009,4(05):148.
[3]刘奕群,张 敏,马少平.基于非内容信息的网络关键资源有效定位[J].智能系统学报,2007,2(01):45.
 LIU Yi-qun,ZHANG Min,MA Shao-ping.Web key resource page selection based on non-content inf o rmation[J].CAAI Transactions on Intelligent Systems,2007,2(05):45.
[4]马世龙,眭跃飞,许 可.优先归纳逻辑程序的极限行为[J].智能系统学报,2007,2(04):9.
 MA Shi-long,SUI Yue-fei,XU Ke.Limit behavior of prioritized inductive logic programs[J].CAAI Transactions on Intelligent Systems,2007,2(05):9.
[5]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(05):8.
[6]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(05):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6(05):396.
[7]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,7(03):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,7(05):189.
[8]文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(02):95.[doi:10.3969/j.issn.1673-4785.201208012]
 WEN Yimin,QIANG Baohua,FAN Zhigang.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8(05):95.[doi:10.3969/j.issn.1673-4785.201208012]
[9]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(02):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(05):183.[doi:10.3969/j.issn.1673-4785.201209056]
[10]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(03):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8(05):261.

备注/Memo

备注/Memo:
收稿日期:2018-10-03。
作者简介:储德润,男,1994年生,硕士研究生,主要研究方向为数据挖掘;周治平,男,1962年生,教授,博士,主要研究方向为智能检测、网络安全。发表学术论文20余篇。
通讯作者:储德润.E-mail:CDR0727@163.com
更新日期/Last Update: 1900-01-01