[1]修春波,李欣,巴富珊.模糊直方图模型的运动目标跟踪[J].智能系统学报,2019,14(05):939-946.[doi:10.11992/tis.201807033]
 XIU Chunbo,LI Xin,BA Fushan.Target tracking based on the fuzzy histogram model[J].CAAI Transactions on Intelligent Systems,2019,14(05):939-946.[doi:10.11992/tis.201807033]
点击复制

模糊直方图模型的运动目标跟踪(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
939-946
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Target tracking based on the fuzzy histogram model
作者:
修春波12 李欣1 巴富珊1
1. 天津工业大学 电气工程与自动化学院, 天津 300387;
2. 天津工业大学 电工电能新技术天津市重点实验室, 天津 300387
Author(s):
XIU Chunbo12 LI Xin1 BA Fushan1
1. School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, China;
2. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China
关键词:
模糊直方图目标跟踪光照变化色度漂移反向投影实时跟踪隶属度目标定位
Keywords:
fuzzy histogramtarget trackingillumination variationhue driftback-projectionreal-time trackingmembership degreetarget location
分类号:
TP391.4
DOI:
10.11992/tis.201807033
摘要:
为改善跟踪系统对跟踪场景中目标色度和光照变化鲁棒性,提出基于模糊直方图的目标模型建立方法。首先,在色度论域内定义色度模糊等级,根据模糊隶属度函数建立目标区域模糊直方图,由此降低目标直方图模型对色度等级阈值的敏感性。然后,利用模糊直方图模型进行反向投影,建立跟踪场景的概率分布图。最后,利用Camshift方法实现目标的识别、定位与跟踪。仿真实验结果表明:与传统方法相比,采用模糊直方图模型的跟踪方法对色度漂移等干扰具有更好的适应性,目标在顺光、侧光以及逆光环境下移动时,该方法能够完成目标的准确定位与跟踪,单帧平均跟踪时间与基本Camshift方法相当,单帧最大跟踪时间小于40 ms,满足电视跟踪等系统实时性要求。
Abstract:
To enhance the robustness of the tracking system to the hue drift and illumination variation, a new target model based on the fuzzy histogram is proposed in this paper. First, some fuzzy ranks were defined in the hue domain, and the fuzzy histogram model of the target area is built according to the fuzzy membership degree to reduce the sensibility to the hue thresholds. Then, the probability distribution image of the tracking-scene image based on the back-projection of the fuzzy histogram model was built. Finally, the Camshift tracking method was used to perform target recognition, location, and tracking. The simulation results show that the method has better adaptability to the interference caused by hue drift than conventional methods. Target tracking can still be completed by the method when the target moves in the illumination-varying condition, such as front, side, and back light. The average tracking computation time of a single frame of the method is similar to that of the basic Camshift method. The maximum tracking computation time of a single frame is less than 40 ms, which can satisfy the real-time request of tracking systems such as a television tracking system.

参考文献/References:

[1] QU Shiru, LIU Ningning. Face detection and tracking method based on SMQT and CAMSHIFT[J]. Journal of computational information systems, 2015, 11(14):5153-5162.
[2] 黄晋英, 宋国浩, 兰艳亭, 等. 交比不变的Camshift跟踪方法[J]. 光学精密工程, 2016, 24(4):945-953 HUANG Jinying, SONG Guohao, LAN Yanting, et al. Camshift tracking based on constant cross ratio[J]. Optics and precision engineering, 2016, 24(4):945-953
[3] 刘威, 陈先桥, 初秀民. 基于置信规则推理方法的雷达目标跟踪[J]. 哈尔滨工程大学学报, 2016, 37(6):826-831 LIU Wei, CHEN Xianqiao, CHU Xiumin. Radar target tracking via belief rule-based methodology[J]. Journal of Harbin Engineering University, 2016, 37(6):826-831
[4] 王春平, 王暐, 刘江义, 等. 基于色度饱和度-角度梯度直方图特征的尺度自适应核相关滤波跟踪[J]. 光学精密工程, 2016, 24(9):2293-2301 WANG Chunping, WANG Wei, LIU Jiangyi, et al. Scale adaptive kernelized correlation filter tracking based on HHS-OG feature[J]. Optics and precision engineering, 2016, 24(9):2293-2301
[5] 朱齐丹, 韩瑜, 蔡成涛. 全景视觉非线性核相关滤波目标跟踪技术[J]. 哈尔滨工程大学学报, 2018, 39(7):1220-1226 ZHU Qidan, HAN Yu, CAI Chengtao. Omni-directional visual object tracking using nonlinear kernelized correlation filters[J]. Journal of Harbin Engineering University, 2018, 39(7):1220-1226
[6] LIU Shenshen, ZHOU Pu, MA Chanyu. Athlete tracking model based on morphological noise removal camshift algorithm[J]. International journal of earth science and engineering, 2015, 8(5):2246-2251.
[7] 于蕾, 夏业儒, 杨良洁. 改进理解诊断跟踪系统的目标跟踪方法[J]. 应用科技, 2018, 45(4):76-81 YU Lei, XIA Yeru, YANG Liangjie. A target tracking algorithm for the improved understanding, diagnosing and tracking system[J]. Applied science and technology, 2018, 45(4):76-81
[8] YIN Minghao, ZHANG Jin, SUN Hongguang, et al. Multi-cue-based CamShift guided particle filter tracking[J]. Expert systems with applications, 2011, 38(5):6313-6318.
[9] HUANG Danchi, LI Lijuan. Face tracking algorithm based on improved Camshift and surf algorithm[J]. Journal of computational information systems, 2015, 11(3):893-901.
[10] HSIA C H, LIOU Y J, CHIANG J S. Directional prediction camshift algorithm based on adaptive search pattern for moving object tracking[J]. Journal of real-time image processing, 2016, 12(1):183-195.
[11] 修春波, 卢少磊, 任晓. 基于微分信息融合的Mean Shift改进跟踪算法[J]. 系统工程与电子技术, 2014, 36(5):1004-1009 XIU Chunbo, LU Shaolei, REN Xiao. Improved mean shift tracking algorithm based on differential information[J]. Systems engineering and electronics, 2014, 36(5):1004-1009
[12] 修春波, 魏世安, 万蓉凤. 二维联合特征模型的自适应均值漂移目标跟踪[J]. 光电子·激光, 2015, 26(2):342-351 XIU Chunbo, WEI Shian, WAN Rongfeng. CamShift target tracking based on two-dimensional joint characteristics[J]. Journal of optoelectronics·laser, 2015, 26(2):342-351
[13] 张天翼, 杨忠, 韩家明, 等. 基于连续自适应均值漂移和立体视觉的无人机目标跟踪方法[J]. 应用科技, 2018, 45(2):55-59 ZHANG Tianyi, YANG Zhong, HAN Jiaming, et al. Approach of vision navigation of UAV based on continuously adaptive mean-shift and stereo vision[J]. Applied science and technology, 2018, 45(2):55-59
[14] 刘明华, 汪传生, 王宪伦. 基于多特征自适应融合的均值迁移目标跟踪算法[J]. 光电子·激光, 2015, 26(8):1583-1592 LIU Minghua, WANG Chuansheng, WANG Xianlun. Mean-shift target tracking algorithm based on adaptive multi-features fusion[J]. Journal of optoelectronics·laser, 2015, 26(8):1583-1592
[15] 夏瑜, 吴小俊, 李菊, 等. 基于多特征自适应融合的分类采样跟踪算法[J]. 光电子·激光, 2016, 27(3):325-331 XIA Yu, WU Xiaojun, LI Ju, et al. Classified sampling tracking algorithm based on adaptive multiple features fusion[J]. Journal of optoelectronics·laser, 2016, 27(3):325-331
[16] 杨超, 蔡晓东, 王丽娟, 等. 一种改进的CAMshift跟踪算法及人脸检测框架[J]. 计算机工程与科学, 2016, 38(9):1863-1869 YANG Chao, CAI Xiaodong, WANG Lijuan, et al. An improved CAMShift tracking algorithm and a face detection framework[J]. Computer engineering and science, 2016, 38(9):1863-1869
[17] 修春波, 魏世安. 显著性直方图模型的Camshift跟踪方法[J]. 光学精密工程, 2015, 23(6):1749-1757 XIU Chunbo, WEI Shian. Camshift tracking with saliency histogram[J]. Optics and precision engineering, 2015, 23(6):1749-1757
[18] 林建华, 刘党辉, 邵显奎. 多特征融合的Camshift算法及其进一步改进[J]. 计算机应用, 2012, 32(10):2814-2816, 2820 LIN Jianhua, LIU Danghui, SHAO Xiankui. Multi-feature fusion Camshift algorithm and its further improvement[J]. Journal of computer applications, 2012, 32(10):2814-2816, 2820

相似文献/References:

[1]王绍钰 蔡自兴,陈爱斌.改进的粒子滤波器目标跟踪方法[J].智能系统学报,2008,3(03):189.
 WANG Shao-yu,CAI Zi-xing,CHEN Ai-bin.Improved object tracking method for particle filters[J].CAAI Transactions on Intelligent Systems,2008,3(05):189.
[2]刘 清,吴志刚,窦 琴,等.粒子滤波的视频目标跟踪算法研究[J].智能系统学报,2009,4(06):538.[doi:10.3969/j.issn.1673-4785.2009.06.012]
 LIU Qing,WU Zhi-gang,DOU Qin,et al.A particle filtering algorithm for tracking moving objects in videos[J].CAAI Transactions on Intelligent Systems,2009,4(05):538.[doi:10.3969/j.issn.1673-4785.2009.06.012]
[3]伍 明,孙继银.一种机器人未知环境下动态目标跟踪交互多模滤波算法[J].智能系统学报,2010,5(02):127.
 WU Ming,SUN Ji-yin.An interacting multiple model filtering algorithm for mobile robots to improve tracking of moving objects in unknown environments[J].CAAI Transactions on Intelligent Systems,2010,5(05):127.
[4]李 金,胡文广.基于颜色的快速人体跟踪及遮挡处理[J].智能系统学报,2010,5(04):353.
 LI Jin,HU Wen-guang.Tracking fast movement using colors while accommodating occlusion[J].CAAI Transactions on Intelligent Systems,2010,5(05):353.
[5]刘侠,陶冶,邢春.统计差分与自启动的Camshift跟踪算法[J].智能系统学报,2011,6(04):355.
 LIU Xia,TAO Ye,XING Chun.An objective tracking Camshift algorithm based onautomatic startup and the statistical differential method[J].CAAI Transactions on Intelligent Systems,2011,6(05):355.
[6]伍明,孙继银.基于粒子滤波的未知环境下机器人同时定位、地图构建与目标跟踪[J].智能系统学报,2013,8(02):168.[doi:10.3969/j.issn.1673-4785.201202001]
 WU Ming,SUN Jiyin.Simultaneous localization, mapping and object tracking in an unknown environment using particle filtering[J].CAAI Transactions on Intelligent Systems,2013,8(05):168.[doi:10.3969/j.issn.1673-4785.201202001]
[7]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
[8]王熙,吴为,钱沄涛.基于轨迹聚类的超市顾客运动跟踪[J].智能系统学报,2015,10(02):187.[doi:10.3969/j.issn.1673-4785.201401002]
 WANG Xi,WU Wei,QIAN Yuntao.Trajectory clustering based customer movement tracking in a supermarket[J].CAAI Transactions on Intelligent Systems,2015,10(05):187.[doi:10.3969/j.issn.1673-4785.201401002]
[9]陈真,王钊.元认知粒子滤波目标跟踪算法[J].智能系统学报,2015,10(03):387.[doi:10.3969/j.issn.1673-4785.201405052]
 CHEN Zhen,WANG Zhao.Object tracking algorithm with metacognitive model-based particle filters[J].CAAI Transactions on Intelligent Systems,2015,10(05):387.[doi:10.3969/j.issn.1673-4785.201405052]
[10]王杰,蒋明敏,花晓慧,等.基于投影直方图匹配的双目视觉跟踪算法[J].智能系统学报,2015,10(5):775.[doi:10.11992/tis.201410009]
 WANG Jie,JIANG Mingmin,HUA Xiaohui,et al.Binocular object tracking method using projection histogram matching[J].CAAI Transactions on Intelligent Systems,2015,10(05):775.[doi:10.11992/tis.201410009]

备注/Memo

备注/Memo:
收稿日期:2018-07-30。
基金项目:天津市自然科学基金项目(18JCYBJC88300,17JCYBJC18500);天津市高等学校创新团队培养计划项目(TD13-5036).
作者简介:修春波,男,1978年生,教授,博士,主要研究方向为人工神经网络及目标识别。主持完成国家自然科学基金项目1项,天津市应用基础与前沿计划项目1项,获得授权发明专利10余项。发表学术论文100余篇;李欣,女,1994年生,硕士研究生,主要研究方向为图像处理与模式识别;巴富珊,女,1993年生,硕士研究生,主要研究方向为机器视觉与目标检测。
通讯作者:修春波.E-mail:xiuchunbo@tjpu.edu.cn
更新日期/Last Update: 1900-01-01