[1]衣淳植,郭浩,丁振,等.下肢外骨骼研究进展及关节运动学解算综述[J].智能系统学报,2018,13(06):878-888.[doi:10.11992/tis.201804063]
 YI Chunzhi,GUO Hao,DING Zhen,et al.Research progress of lower-limb exoskeleton and joint kinematics calculation[J].CAAI Transactions on Intelligent Systems,2018,13(06):878-888.[doi:10.11992/tis.201804063]
点击复制

下肢外骨骼研究进展及关节运动学解算综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年06期
页码:
878-888
栏目:
出版日期:
2018-10-25

文章信息/Info

Title:
Research progress of lower-limb exoskeleton and joint kinematics calculation
作者:
衣淳植1 郭浩1 丁振1 朱瑞1 杨炽夫1 刘绍辉2 姜峰2
1. 哈尔滨工业大学机电工程学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001
Author(s):
YI Chunzhi1 GUO Hao1 DING Zhen1 ZHU Rui1 YANG Chifu1 LIU Shaohui2 JIANG Feng2
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
关键词:
下肢外骨骼矫正器机器人学行走可穿戴惯性测量单元
Keywords:
lower-limb exoskeletonorthosesroboticswalkingwearableinertial measurement unit (IMU)
分类号:
TP391.4
DOI:
10.11992/tis.201804063
摘要:
随着传感融合、移动计算、智能驱动等技术的发展以及研究者对人体运动中下肢重要生物力学功能认知的逐步深化,下肢外骨骼机器人作为一种与下肢并联,能为穿戴者行走助力的可穿戴智能设备愈发受到世界各研究机构的重视。本文根据下肢外骨骼的用途和结构详细综述了近年下肢外骨骼的研究进展,并借此对下肢外骨骼的未来发展进行展望。并针对下肢外骨骼在实时运动学检测与控制上对小型传感器的迫切需求,提出一种能够用于控制下肢外骨骼的基于惯性测量单元的人体下肢关节运动学测量与解算技术,在基于惯性测量的单自由度关节角度结算上得到较好结果。
Abstract:
With the development of sensor fusion, mobile computing, and intelligent actuation, as well as the in-depth understanding of the biomechanics, lower-limb exoskeleton, which is an assistive, wearable intelligent device that operates parallel to human legs, has become the key research area of many research institutes around the world. In this paper, recent research progresses in lower-limb exoskeleton are reviewed in detail. In addition, an inertial measurement unit (IMU)-based human lower-limb kinematics calculation method is proposed to meet the need of small sensors in real-time kinematics calculation and control for lower-limb exoskeleton. The calculation of IMU-based single-degree-of-freedom joint angle achieves better result.

参考文献/References:

[1] HEINLEIN R A. Starship troopers[M]. New York:Putnam, 1959.
[2] DICK J G, EDWARDS E A. Human bipedal locomotion device[P]. US:5016869, 1991-05-21.
[3] LUNENBURGER L, COLOMBO G, RIENER R, et al. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat[C]//Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:345-348.
[4] INMAN V T, RALSTON H J, TODD F. Human walking[M]. Baltimore:Waverly Press, 1981.
[5] POPOVIC M B, GOSWAMI A, HERR H M. Ground reference points in legged locomotion:definitions, biological trajectories and control implications[J]. The international journal of robotics research, 2005, 24(12):1013-1032.
[6] VAN DEN BOGERT A J. Exotendons for assistance of human locomotion[J]. Biomedical engineering online, 2003, 2:17.
[7] WINTER D A. International society of biomechanics, biomechanical data resources, gait data[Z]. (2002-11-24). http://www.isbweb.org/data/. 2018.
[8] BROCKWAY J M. Derivation of formulae used to calculate energy expenditure in man[J]. Human nutrition. Clinical nutrition, 1987, 41(6):463-471.
[9] DONELAN J M, KRAM R, KUO A D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking[J]. Journal of experimental biology, 2002, 205(23):3717-3727.
[10] GARCIA E, SATER J M, MAIN J. Exoskeletons for human performance augmentation (EHPA):a program summary[J]. Journal of the robotics society of Japan, 2002, 20(8):822-826.
[11] KAZEROONI H. The Berkeley lower extremity exoskeleton[M]//CORKE P, SUKKARIAH S. Field and Service Robotics:Results of the 5th International Conference. Berlin, Heidelberg, Germany2006:9-15.
[12] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME transactions on mechatronics, 2006, 11(2):128-138.
[13] AMUNDSON K, RAADE J, HARDING N, et al. Hybrid hydraulic-electric power unit for field and service robots[C]//Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alta., Canada, 2005:53-3458.
[14] CHU A, KAZEROONI H, ZOSS A. On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX)[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:4345-4352.
[15] ZOSS A, KAZEROONI H. Design of an electrically actuated lower extremity exoskeleton[J]. Advanced robotics, 2006, 20(9):967-988.
[16] GUIZZO E, GOLDSTEIN H. The rise of the body bots[robotic exoskeletons] [J]. IEEE spectrum, 2005, 42(10):50-56.
[17] U.S. Army Research Laboratory. 2006 ARO in review[Z]. Adelphi, MD:U.S. Army Research Office, 2006.
[18] WALSH C J, PASCH K, HERR H. An autonomous, underactuated exoskeleton for load-carrying augmentation[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2007:1410-1415.
[19] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, FL, USA, 2006:3485-3491.
[20] VALIENTE A. Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking[D]. Massachusetts:Massachusetts Institute of Technology, 2005.
[21] GOGOLA M, BARTH E J, GOLDFARB M. Monopropellant powered actuators for use in autonomous human-scaled robotics[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002:2357-2362.
[22] KAWAMOTO H, SANKAI Y. Power assist system HAL-3 for gait disorder person[C]//Proceedings of the 8th International Conference on Computers Helping People with Special Needs Handicapped Persons. Berlin, Heidelberg, 2002:196-203.
[23] WALSH C J. Biomimetic design of an under-actuated leg exoskeleton for load-carrying augmentation[D]. Massachusetts:Massachusetts Institute of Technology, 2006.
[24] KAWAMOTO H, LEE S, KANBE S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//Proceedings of 2003 International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance. Washington, DC, USA, 2003:1648-1653.
[25] YAMAMOTO K, HYODO K, ISHⅡ M, et al. Development of power assisting suit for assisting nurse labor[J]. JSME international journal series C, 2002, 45(3):703-711.
[26] YAMAMOTO K, ISHⅡ M, HYODO K, et al. Development of power assisting suit (Miniaturization of Supply System to Realize Wearable Suit)[J]. JSME international journal series C, 2003, 46(3):923-930.
[27] FONTANA M, VERTECHY R, MARCHESCHI S, et al. The body extender:a full-body exoskeleton for the transport and handling of heavy loads[J]. IEEE robotics & automation magazine, 2014, 21(4):34-44.
[28] LUCCHESI N, MARCHESCHI S, BORELLI L, et al. An approach to the design of fully actuated body extenders for material handling[C]//Proceedings of the 19th International Symposium in Robot and Human Interactive Communication. Viareggio, Italy, 2010:482-487.
[29] MARCHESCHI S, SALSEDO F, FONTANA M, et al. Body extender:whole body exoskeleton for human power augmentation[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011:611-616.
[30] LIU Xiaopeng, LOW K H, YU Haoyong. Development of a lower extremity exoskeleton for human performance enhancement[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan, 2005:3889-3894.
[31] LOW K H, LIU Xiaopeng, YU Haoyong. Development of NTU wearable exoskeleton system for assistive technologies[C]//Proceedings of 2005 IEEE International Conference Mechatronics and Automation. Niagara Falls, Ont., Canada, 2005:1099-1106.
[32] ONISHI T, ARAI T, INOUE K, et al. Development of the basic structure for an exoskeleton cyborg system[J]. Artificial life and robotics, 2003, 7(3):95-101.
[33] 法国RB3D公司. http://www.rb3d.com/en/[Z]. 2018
[34] KOSSO E V. A minimum energy exoskeleton[C]//Proceedings of Carnahan Conference on Electronic Prosthetics. Carnahan, UK, 1973:86-89.
[35] PRATT J E, KRUPP B T, MORSE C J, et al. The RoboKnee:an exoskeleton for enhancing strength and endurance during walking[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004:2430-2435.
[36] PIETRO F. Device for the automatic control of the articulation of the knee applicable to a prothesis of the thigh[P]. US:2305291, 1942-12-15.
[37] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. International journal of humanoid robotics, 2007, 4(3):487-506.
[38] GREGORCZYK K N, OBUSEK J P, HASSELQUIST L, et al. The effects of a lower body exoskeleton load carriage assistive device on oxygen consumption and kinematics during walking with loads[J]. 2006.
[39] JANSEN J F, BIRDWELL J F, BOYNTON A C, et al. Phase I report DARPA Exoskeleton Program[Z]. 2003.
[40] COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555):212-215.
[41] GRIMMER M, ESLAMY M, GLIECH S, et al. A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA, 2012:2463-2470.
[42] VUKOBRATOVIC M, BOROVA B, SURLA D, et al. Scientific fundamentals of robotics 7:biped locomotion, dynamics, stability, control and application[M]. New York:Springer Verlag, 1990.
[43] STRAUSSER K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA, 2011:4911-4916.
[44] BANALA S K, AGRAWAL S K, FATTAH A, et al. Gravity-balancing leg orthosis and its performance evaluation[J]. IEEE transactions on robotics, 2006, 22(6):1228-1239.
[45] KONG K, JEON D. Design and control of an exoskeleton for the elderly and patients[J]. IEEE/ASME transactions on mechatronics, 2006, 11(4):428-432.
[46] MORI Y, TAKAYAMA K, NAKAMURA T. Development of straight style transfer equipment for lower limbs disabled[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004:2486-2491.
[47] HARTIGAN C, KANDILAKIS C, DALLEY S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in spinal cord injury rehabilitation, 2015, 21(2):93-99.
[48] QUINTERO H A, FARRIS R J, HARTIGAN C, et al. A powered lower limb orthosis for providing legged mobility in paraplegic individuals[J]. Topics in spinal cord injury rehabilitation, 2011, 17(1):25-33.
[49] SEEL T, SCHAUER T, RAISCH J. Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints[C]//Proceedings of 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, 2012:45-49.
[50] LAIDIG D, MÜLLER P, SEEL T. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields[J]. Current directions in biomedical engineering, 2017, 3(2):167-170.
[51] DEL-AMA A J, MORENO J C, GIL-AGUDO À, et al. Online assessment of human-robot interaction for hybrid control of walking[J]. Sensors, 2012, 12(1):215-225.
[52] DEL-AMA A J, GIL-AGUDO Á, PONS J L, et al. Hybrid gait training with an overground robot for people with incomplete spinal cord injury:a pilot study[J]. Forntiers in human neuroscience, 2014, 8:298.
[53] HOLLANDER K W, ILG R, SUGAR T G, et al. An efficient robotic tendon for gait assistance[J]. Journal of biomechanical engineering, 2006, 128(5):788-791.
[54] BHARADWAJ K, SUGAR T G, KOENEMAN J B, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation[J]. Journal of biomechanical engineering, 2005, 127(6):1009-1013.
[55] AGRAWAL A, BANALA S K, AGRAWAL S K, et al. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation[C]//Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:41-44.
[56] NIKITCZUK J, WEINBERG B, MAVROIDIS C. RehAbilitative knee orthosis driven by electro-rheological fluid based actuators[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:2283-2289.
[57] FLEISCHER C, HOMMEL G. Embedded control system for a powered leg exoskeleton[M]//HOMMEL G, HUANYE S. Embedded Systems-Modeling, Technology, and Applications. Dordrecht:Springer, 2006:177-185.
[58] KAWASHIMA N, SONE Y, NAKAZAWA K, et al. Energy expenditure during walking with weight-bearing control (WBC) orthosis in thoracic level of paraplegic patients[J]. Spinal cord, 2003, 41(9):506-510.
[59] BELFORTE G, GASTALDI L, SORLI M. Pneumatic active gait orthosis[J]. Mechatronics, 2001, 11(3):301-323.
[60] GRIFFIN T M, ROBERTS T J, KRAM R. Metabolic cost of generating muscular force in human walking:insights from load-carrying and speed experiments[J]. Journal of applied physiology, 2003, 95(1):172-183.
[61] CROWELL Ⅲ H, BOYNTON A C, MUNGIOLE M. Exoskeleton power and torque requirements based on human biomechanics[J]. Exoskeleton Power & Torque Requirements Based on Human Biomechanics, 2002.
[62] BOYNTON A C, CROWELL Ⅲ H P. A human factors evaluation of exoskeleton boot interface sole thickness[J]. A Human Factors Evaluation of Exoskeleton Boot Interface Sole Thickness, 2006.
[63] HARMAN E, HOON K, FRYKMAN P, et al. The effects of backpack weight on the biomechanics of load carriage[R]. Natick, MA:U.S. Army Research Institute of Environmental Medicine, 2000.
[64] ATTWELLS R L, BIRRELL S A, HOOPER R H, et al. Influence of carrying heavy loads on soldiers’ posture, movements and gait[J]. Ergonomics, 2006, 49(14):1527-1537.
[65] ENDO K, PALUSKA D, HERR H. A quasi-passive model of human leg function in level-ground walking[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:4935-4939.
[66] WEHNER M, QUINLIVAN B, AUBIN P M, et al. A lightweight soft exosuit for gait assistance[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013:3362-3369.
[67] ASBECK A T, DE ROSSI S M M, HOLT K G, et al. A biologically inspired soft exosuit for walking assistance[J]. The international journal of robotics research, 2015, 34(6):744-762.
[68] DING Ye, GALIANA I, ASBECK A, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014:1327-1334.
[69] MIT Technology Review. The exoskeletons are coming[EB/OL]. (2015-07-16). https://www.technologyreview.com/s/539251/the-exoskeletons-are-coming/. 2018.

备注/Memo

备注/Memo:
收稿日期:2018-04-30。
基金项目:国家自然科学基金项目(61572155,61672188,61272386);国家重点基础研究发展计划(2015CB351804);黑龙江省教育厅科学研究项目(12541177).
作者简介:衣淳植,男,1995年生,研究助理,主要研究方向为下肢外骨骼机器人、人机协作、人体运动学、惯性导航、仿生学;郭浩,男,1994年生,研究助理,主要研究方向为肌电信息解码与人机交互;姜峰,男,1979年生,教授,IEEE哈尔滨信号处理分会主席、美国Princeton大学电子工程系访问学者、核九院特聘专家、黑龙江VR联盟首席专家,主要研究方向为计算机视觉、模式识别、视频图像处理、下肢外骨骼机器人。近5年项目主持国家自然科学基金面上项目、国家自然科学基金青年项目、军委科技委项目、国际合作项目等10余项;参与国家重点研发计划、国家自然科学基金重点项目、国家973计划、863计划、国际合作项目20项。获军队科技进步二等奖(排名第二)、黑龙江省高校科技奖一等奖。发表学术论文100余篇,其中第一作者发表JMLR、IEEE Trans等国际期刊论文20余篇;发表论文单篇引用最高210次;出版中文、英文专著和教材3部。
通讯作者:姜峰.E-mail:fjiang@hit.edu.cn
更新日期/Last Update: 2018-12-25