[1]安果维,王耀南,周显恩,等.基于显著性检测的双目测距系统[J].智能系统学报,2018,13(06):913-920.[doi:10.11992/tis.201712005]
 AN Guowei,WANG Yaonan,ZHOU Xianen,et al.Binocular distance measurement system based on saliency detection[J].CAAI Transactions on Intelligent Systems,2018,13(06):913-920.[doi:10.11992/tis.201712005]
点击复制

基于显著性检测的双目测距系统(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年06期
页码:
913-920
栏目:
出版日期:
2018-10-25

文章信息/Info

Title:
Binocular distance measurement system based on saliency detection
作者:
安果维 王耀南 周显恩 谭建豪
湖南大学 机器人视觉感知与控制技术国家工程实验室, 湖南 长沙 410082
Author(s):
AN Guowei WANG Yaonan ZHOU Xian’en TAN Jianhao
National Engineering Laboratory for Robot Visual Perception and Control Technology, Hu’nan University, Changsha 410082, China
关键词:
机器视觉surf算子双目测距特征点匹配相机矫正
Keywords:
machine visionsurf operatorbinocular distance measurementfeature points matchcamera correction
分类号:
TP391
DOI:
10.11992/tis.201712005
摘要:
为了提高双目视觉测距系统中图像匹配的实时性与测距的精度,提出一种将显著性检测与焦距拟合相结合的双目测距方法。首先对双目相机进行畸变矫正,并利用双目相机成像的特点拟合相机焦距与目标距离的关系,随后对所得图像进行显著性检测,并提取目标区域,最后,利用surf算子对提取出的区域进行特征匹配,将匹配点代入测距模型中得到目标物体的距离。结果表明:显著性检测方法明显提升算法执行速度,焦距拟合降低双目测距模型误差,明显提升双目测距精度。
Abstract:
To improve real-time image matching and ranging accuracy in binocular vision ranging systems, this paper proposes a binocular distance measurement method, in which saliency detection and focal length fitting are combined. The method first corrects the distortion of the binocular camera and then fits the relationship between the camera focal length and object distance by using the characteristics of the binocular camera imaging and further applies the obtained image for saliency detection, and then the target object area is extracted. Finally, the surf operator is used to perform feature matching on the extracted region, and the matching point is substituted into the ranging model to obtain the distance of the target object. The results show that the saliency detection method can significantly improve the execution speed of the algorithm, and the focal length fitting can reduce the error of binocular ranging model, which significantly improves the binocular ranging system accuracy.

参考文献/References:

[1] 杨景豪, 刘巍, 刘阳, 等. 双目立体视觉测量系统的标定[J]. 光学精密工程, 2016, 24(2):300-308 YANG Jinghao, LIU Wei, LIU Yang, et al. Calibration of binocular vision measurement system[J]. Optics and precision engineering, 2016, 24(2):300-308
[2] 邱雪娜, 刘士荣. 基于序贯检测机制的双目视觉运动目标跟踪与定位方法[J]. 机器人, 2011, 33(1):181-190 QIU Xuena, LIU Shirong. Moving objects tracking and localization with binocular vision based on sequential detection mechanism[J]. Robot, 2011, 33(1):181-190
[3] 赵振庆, 叶东, 陈刚, 等. 垂直直线特征的双目视觉位姿测量方法[J]. 光学学报, 2014, 34(10):1015003 ZHAO Zhenqing, YE Dong, CHEN Gang, et al. Binocular vision method of measuring pose based on perpendicular lines[J]. Acta optica sinica, 2014, 34(10):1015003
[4] 刘俸材, 谢明红, 王伟. 双目视觉的立体标定方法[J]. 计算机工程与设计, 2011, 32(4):1508-1512 LIU Fengcai, XIE Minghong, WANG Wei. Stereo calibration method of binocular vision[J]. Computer engineering and design, 2011, 32(4):1508-1512
[5] 郭慧, 刘亚菲, 王勇, 等. 大型齿轮工件焊接的双目视觉测量标定[J]. 东华大学学报:自然科学版, 2013, 39(4):455-459 GUO Hui, LIU Yafei, WANG Yong, et al. Calibration of binocular vision measurement of large gear workpiece welding[J]. Journal of Donghua university:natural science, 2013, 39(4):455-459
[6] 历艳琨, 毛建旭, 刘仁明. 基于特征点的3D人脸姿态跟踪[J]. 电子测量与仪器学报, 2016, 30(4):605-612 LI Yankun, MAO Jianxu, LIU Renming. 3D face pose tracking based on feature matching[J]. Journal of electronic measurement and instrument, 2016, 30(4):605-612
[7] 张国刚, 徐向辉. 基于加权纹理特征的SAR图像目标识别算法[J]. 国外电子测量技术, 2015, 34(9):22-25 ZHANG Guogang, XU Xianghui. SAR image target recognition algorithms based on weighted texture features[J]. Foreign electronic measurement technology, 2015, 34(9):22-25
[8] BAY H, TUYTELAARS T, VAN GOOl L. SURF:speeded Up robust features[C]//Proceedings of the 9th European conference on Computer Vision. Graz, Austria, 2006:404-417.
[9] 余小欢, 韩波, 张宇, 等. 基于双目视觉的微型无人机室内3维地图构建[J]. 信息与控制, 2014, 43(4):392-397 YU Xiaohuan, HAN Bo, ZHANG Yu, et al. Binocular stereo vision based 3D mapping for micro aerial vehicles in an indoor environment[J]. Information and control, 2014, 43(4):392-397
[10] 公衍超, 万帅, 杨楷芳, 等. 利用双目视觉视频的实时三维裸手手势识别[J]. 西安电子科技大学学报:自然科学版, 2014, 41(4):130-136 GONG Yanchao, WAN Shuai, YANG Kaifang, et al. Real-time 3D bare-hand gesture recognition using binocular vision videos[J]. Journal of Xidian university, 2014, 41(4):130-136
[11] CHENG Mingming, ZHANG Guoxin, MITRA N J, et al. Global contrast based salient region detection[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2011:409-416.
[12] ZHANG Zhengyou. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece, 2002, 1:666-673.
[13] 丁莹, 范静涛, 宋天喻. 双目立体视觉检测系统正向最优化设计方法研究[J]. 仪器仪表学报, 2016, 37(3):650-657 DING Ying, FAN Jingtao, SONG Tianyu. Optimal forward design method for the binocular stereo vision inspection system[J]. Chinese journal of scientific instrument, 2016, 37(3):650-657
[14] HOU Xiaodi, ZHANG Liqing. Saliency detection:a spectral residual approach[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8.
[15] YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:1155-1162.
[16] GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2376-2383.
[17] KANAN C, COTTRELL G. Robust classification of objects, faces, and flowers using natural image statistics[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2472-2479.
[18] VALLERAND S, KANBARA M, YOKOYA N. Binocular vision-based augmented reality system with an increased registration depth using dynamic correction of feature positions[C]//Proceedings of 2003 IEEE Virtual Reality. Los Angeles, USA, 2003:271-272.
[19] BANKS J, CORKE P. Quantitative evaluation of matching methods and validity measures for stereo Vision[J]. The international journal of robotics research, 2001, 20(7):512-532.
[20] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up robust features (SURF)[J]. Computer vision and image understanding, 2008, 110(3):346-359.

相似文献/References:

[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(01):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5(06):57.
[2]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11(06):608.[doi:10.11992/tis.201512014]
[3]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(03):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12(06):279.[doi:10.11992/tis.201606037]
[4]郭晓峰,王耀南,周显恩,等.中国象棋机器人棋子定位与识别方法[J].智能系统学报,2018,13(04):517.[doi:10.11992/tis.201709020]
 GUO Xiaofeng,WANG Yaonan,ZHOU Xianen,et al.Chess-piece localization and recognition method for Chinese chess robot[J].CAAI Transactions on Intelligent Systems,2018,13(06):517.[doi:10.11992/tis.201709020]

备注/Memo

备注/Memo:
收稿日期:2017-12-04。
基金项目:国家自然科学基金项目(61433016,61573134).
作者简介:安果维,男,1992年生,硕士研究生,主要研究方向为机器视觉与图像处理;王耀南,男,1957年生,教授,主要研究方向为智能控制理论与智能信息处理,主持国家级项目多项,发表学术论文320余篇,著作8部;周显恩,男,1988年生,博士研究生,主要研究方向为模式识别、图像处理,发表学术论文10余篇。
通讯作者:安果维.E-mail:992466100@qq.com
更新日期/Last Update: 2018-12-25