[1]陈爱国,王士同.基于极大熵的知识迁移模糊聚类算法[J].智能系统学报,2017,12(1):95-103.[doi:10.11992/tis.201602003]
 CHEN Aiguo,WANG Shitong.A maximum entropy-based knowledge transfer fuzzy clustering algorithm[J].CAAI Transactions on Intelligent Systems,2017,12(1):95-103.[doi:10.11992/tis.201602003]
点击复制

基于极大熵的知识迁移模糊聚类算法

参考文献/References:
[1] CARIOU C, CHEHDI K. Unsupervised nearest neighbors clustering with application to hyperspectral images[J]. IEEE journal of selected topics in signal processing, 2015, 9(6): 1105-1116.
[2] ALI A, BOYACI A, BAYNAL K. Data mining application in banking sector with clustering and classification methods[C]//Proceedings of 2015 International Conference on Industrial Engineering and Operations Management. Dubai, UAE, 2015: 1-8.
[3] LI Shuai, ZHOU Xiaofeng, SHI Haibo, et al. An efficient clustering method for medical data applications[C]//Proceedings of 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent System. Shenyang, China, 2015: 133-138.
[4] LIKAS A, VLASSIS N, VERBEEK J J. The global k-means clustering algorithm[J]. Pattern recognition, 2003, 36(2): 451-461.
[5] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer, 1981: 43-93.
[6] KARAYIANNIS N B. MECA: maximum entropy clustering algorithm[C]//Proceedings of the 3rd IEEE International Conference on Fuzzy Systems. Orlando, USA, 1994, 1: 630-635.
[7] LI Ruiping, MUKAIDONO M. A maximum-entropy approach to fuzzy clustering[C]//Proceedings of 1995 the 4th IEEE International Conference on Fuzzy System. Yokohama, Japan, 1995, 4: 2227-2232.
[8] ZHANG Tian, RAMAKRISHNAN R, LIVNY M. BIRCH: an efficient data clustering method for very large databases[C]//Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. New York, NY, USA, 1996: 103-114.
[9] GUHA S, RASTOGI R, SHIM K. CURE: an efficient clustering algorithm for large databases[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York, NY, USA, 1998: 73-84.
[10] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceeding of the Second International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA, 1996: 226-231.
[11] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering Points to Identify the Clustering Structure[C]//Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. Philadelphia, Pennsylvania, USA, 1999: 49-60.
[12] ARIAS-CASTRO E, CHEN Guangliang, LERMAN G. Spectral Clustering based on local linear approximations[J]. Electronic journal of statistics, 2011, 5: 1537-1587.
[13] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[14] GU Quanquan, ZHOU Jie. Learning the shared subspace for multi-task clustering and transductive transferclassification[C]//Proceedings of Ninth IEEE International Conference on Data Mining. Miami, FL, USA, 2009: 159-168.
[15] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Self-taught clustering[C]//Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA, 2008: 200-207.
[16] GU Quanquan, ZHOU Jie. Co-clustering on manifolds[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2009: 359-368.
[17] JIANG Wenhao, CHUNG F L. Transfer spectral clustering[M]//FLACH P A, BIE T D, CRISTIANINI N. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2012: 789-803.
[18] JING Liping, NG K M, HUANG J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE transactions on knowledge and data engineering, 2007, 19(8): 1026-1041.
[19] LIU Jun, MOHAMMED J, CARTER J, et al. Distance-based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978.
[20] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Co-clustering based classification for out-of-domain documents[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA, 2007: 210-219.
[21] MCCALLUM A K. Bow: a toolkit for statistical language modeling, text retrieval, classification and clustering[EB/OL]. 1996. http://www.cs.cmu.edu/mccallum/bow.
[22] BAY S D, KIBLER D, PAZZANI M J, et al. The UCI KDD archive of large data sets for data mining research and experimentation[J]. ACM SIGKDD explorations newsletter, 2000, 2(2): 81-85.

备注/Memo

收稿日期:2016-2-4;改回日期:。
基金项目:国家自然科学基金项目(61272210); 江苏省自然科学基金项目(BK20130155);
作者简介:陈爱国,男,1975年生,博士研究生,主要研究方向为模式识别与机器学习;王士同,男,1964年生,教授,博士生导师,中国离散数学学会常务理事,中国机器学习学会常务理事,主要研究方向为人工智能、模式识别和生物信息。发表学术论文近百篇,其中被SCI、EI检索50余篇。
通讯作者:陈爱国.E-mail:agchen@jiangnan.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134