[1]马利民.欠驱动AUV全局无抖振滑模轨迹跟踪控制[J].智能系统学报编辑部,2016,11(2):200-207.[doi:10.11992/tis.201512015]
 MA Limin.Global chattering-free sliding mode trajectory tracking control of underactuated autonomous underwater vehicles[J].CAAI Transactions on Intelligent Systems,2016,11(2):200-207.[doi:10.11992/tis.201512015]
点击复制

欠驱动AUV全局无抖振滑模轨迹跟踪控制(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年2期
页码:
200-207
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
Global chattering-free sliding mode trajectory tracking control of underactuated autonomous underwater vehicles
作者:
马利民
中国人民解放军海军驻锦州地区军事代表室, 辽宁 锦州 121000
Author(s):
MA Limin
Navy Military Representative Office in Jinzhou, Jinzhou 121000, China
关键词:
自主水下航行器全局控制滑模控制轨迹跟踪反步法自适应多约束条件Lyapunov方法
Keywords:
autonomous underwater vehicleglobal controlsliding mode controltrajectory trackingbacksteppingadaptiveconstraintLyapunov method
分类号:
TP391
DOI:
10.11992/tis.201512015
摘要:
研究了具有控制输入及速度约束的欠驱动自主水下航行器(Autonomous underwater vehicle, AUV)全局轨迹跟踪控制问题。首先,将AUV运动学特性线性化,设计虚拟速度及航向角指令,解决传统反步法中速度跳变问题,满足了控制输入及速度约束条件;然后,结合动力学特性,采用自适应无抖振滑模技术,设计了欠驱动AUV的全局轨迹跟踪控制器,解决了Yu等滑模控制中无法保证航向跟踪控制问题。从工程应用角度出发,有界估计的自适应滑模控制器在AUV具有较大参数不确定及未知环境扰动条件下,表现出更好的控制性能。最后,基于Lyapunov稳定性理论的完整分析证明及仿真实验,表明了该控制器对系统不确定的鲁棒性,能够实现控制输入及速度约束的欠驱动AUV全局轨迹跟踪控制。
Abstract:
To investigate the global trajectory tracking control problem of an underactuated autonomous underwater vehicle (AUV) with control input and velocity constraints, this study first linearized the kinematics to determine the commands of pseudo velocities and yaw angle. These commands solved the speed jump problem in the traditional backstepping method and ensured that the control input and velocity constraints were satisfied. In the second design of the dynamics, an adaptive chattering-free sliding mode technique was used to achieve the global trajectory tracking control of an underactuated AUV, which improved the essential flaws in the work by Yu that cannot guarantee yaw angle tracking. The robust adaptive sliding mode controller with bound estimation achieved enhanced performance for a general class of AUVs in the presence of possibly large parameter uncertainty and unknown environmental disturbances from a practical application viewpoint. Finally, complete stability analysis based on Lyapunov theorem and simulations demonstrated the robustness of the proposed controller to systematical uncertainties, as well as the global tracking ability of underactuated AUVs with control input and velocity constraints.

参考文献/References:

[1] BIAN Xinqian, YAN Zheping, CHEN Tao, et al. Mission management and control of BSA-AUV for ocean survey[J]. Ocean engineering, 2012, 55: 161-174.
[2] 徐玉如, 肖坤. 智能海洋机器人技术进展[J]. 自动化学报, 2007, 33(5): 518-521. XU Yuru, XIAO Kun. Technology development of autonomous ocean vehicle[J]. Acta automatica sinica, 2007, 33(5): 518-521.
[3] 王奎民. 主要海洋环境因素对水下航行器航行影响分析[J]. 智能系统学报, 2015, 10(2): 316-323. WANG Kuimin. Influence of main ocean environments on the navigation of underwater vehicles[J]. CAAI transactions on intelligent systems, 2015, 10(2): 316-323.
[4] REYHANNOGLU M, VAN DER SCHAFT A, MCCLAMROCH N H, et al. Dynamics and control of a class of underactuated mechanical systems[J]. IEEE transactions on automatic control, 1999, 44(9): 1663-1671.
[5] REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel[J]. Automatica, 1997, 33(12): 2249-2254.
[6] AGUIAR A P, HESPANHA J P. Trajectory tracking and path following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE transactions on automatic control, 2007, 52(8): 1362-1379.
[7] DO K D, JIANG Z P, PAN J, et al. A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle[J]. Automatica, 2004, 40(1): 117-124.
[8] ANTONELLI G, CHIAVERINI S, SARKAR N, et al. Adaptive control of an autonomous underwater vehicle: experimental results on ODIN[J]. IEEE transactions on control systems technology, 2001, 9(5): 756-765.
[9] KUMAR R P, DASGUPATA A, KUMAR C S. Robust trajectory control of underwater vehicles using time delay control law[J]. Ocean engineering, 2007, 34(5/6): 842-849.
[10] ANTONELLI G. On the use of adaptive/integral actions for six-degrees-of-freedom control of autonomous underwater vehicles[J]. IEEE journal of oceanic engineering, 32(2): 300-312.
[11] REFSNES J E, ASGEIR J S, PETTERSEN K Y. Model based output feedback control of slender body underactuated AUVs: theory and experiments[J]. IEEE transactions on control systems technology, 2008, 16(5): 930-946.
[12] PISANO A, USAI E. Output-feedback control of an underwater vehicle prototype by higher-order sliding modes[J]. Automatica, 2004, 40(9): 1525-1531.
[13] SOYLU S, BUCKHAM B J, RON P P. A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean engineering, 2008, 35(16): 1647-1659.
[14] 贾鹤鸣, 程相勤, 张利军, 等. 基于离散滑模预测的欠驱动AUV三维航迹跟踪控制[J]. 控制与决策, 2011, 26(10): 1452-1458. JIA Heming, CHENG Xiangqin, ZHANG Lijun, et al. Three-dimensional path tracking control for an underactuated AUV based on discrete-time sliding mode prediction[J]. Control and decision, 2011, 26(10): 1452-1458.
[15] 贾鹤鸣, 张利军, 程相勤, 等. 基于非线性迭代滑模的欠驱动UUV三维航迹跟踪控制[J]. 自动化学报, 2012, 38(2): 308-313. JIA Heming, ZHANG Lijun, CHENG Xiangqin, et al. Three-dimensional path following control for an underactuated UUV based on nonlinear iterative sliding mode[J]. Acta automatica sinica, 2012, 38(2): 308-313.
[16] ZHU Daqi, SUN Bing. The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles[J]. Engineering applications of artificial intelligence, 2013, 26(10): 2260-2269.
[17] 俞建成, 张艾群, 王晓辉, 等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8): 840-846. YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta automatica sinica, 2007, 33(8): 840-846.
[18] ZHANG Lijun, QI Xue, PANG Yongjie. Adaptive output feedback control based on DRFNN for AUV[J]. Ocean engineering, 2009, 36(9/10): 716-722.
[19] 夏国清, 杨莹, 赵为光. 欠驱动AUV模糊神经网络L2增益鲁棒跟踪控制[J]. 控制与决策, 2013, 28(3): 351-356. XIA Guoqing, YANG Ying, ZHAO Weiguang. FNN-based L2 following control of underactuated autonomous underwater vehicles[J]. Control and decision, 2013, 28(3): 351-356.
[20] 徐健, 汪慢, 乔磊. 欠驱动无人水下航行器三维轨迹跟踪的反步控制[J]. 控制理论与应用, 2014, 31(11): 1589-1596. XU Jian, WANG Man, QIAO Lei. Backstepping-based controller for three-dimensional trajectory tracking of underactuated unmanned underwater vehicle[J]. Control theory and applications, 2014, 31(11): 1589-1596.
[21] SUN Bing, ZHU Daqi, YANG S X. A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle[J]. IEEE transactions on industrial electronics, 2014, 61(7): 3682-3693.
[22] 王宏建, 陈子印, 贾鹤鸣, 等. 基于滤波反步法的欠驱动AUV三维路径跟踪控制[J]. 自动化学报, 2015, 41(3): 631-645. WANG Hongjian, CHEN Ziyin, JIA Heming, et al. Three-dimensional path-following control of underactuated autonomous underwater vehicle with command filtered backstepping[J]. Acta automatica sinica, 2015, 41(3): 631-645.
[23] ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al. Sliding mode tracking control of surface vessels[J]. IEEE transactions on industrial electronics, 2008, 55(11): 4004-4012.
[24] YU R, ZHU Q, XIA G, et al. Sliding mode tracking control of an underactuated surface vessel[J]. IET control theory and applications, 2012, 6(3): 461-466.
[25] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: Wiley, 2011.
[26] CHWA D. Global tracking control of underactauted ships with input and velocity constraints using dynamic surface control method[J]. IEEE transactions on control systems technology, 2011, 19(6): 1357-1370.
[27] PETTERSEN K Y, EGELAND O. Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle[J]. IEEE transactions on automatic control, 1999, 44(1): 112-115.

相似文献/References:

[1]袁健,唐功友.采用一致性算法与虚拟结构的多自主水下航行器编队控制[J].智能系统学报编辑部,2011,6(03):248.
 YUAN Jian,TANG Gongyou.Formation control of autonomous underwater vehicles with consensus algorithms and virtual structure[J].CAAI Transactions on Intelligent Systems,2011,6(2):248.

备注/Memo

备注/Memo:
收稿日期:2015-12-9;改回日期:。
基金项目:国家自然科学基金项目(51179038,51105088).
作者简介:马利民,男,1978年生,主要研究方向为水下航行器的导航、制导与控制。
通讯作者:马利民.E-mail:1026809958@qq.com.
更新日期/Last Update: 1900-01-01