字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 一种改进的搜索密度峰值的聚类算法-《智能系统学报》

[1]淦文燕,刘冲.一种改进的搜索密度峰值的聚类算法[J].智能系统学报,2017,12(02):229-235.[doi:10.11992/tis.201512036]
 GAN Wenyan,LIU Chong.An improved clustering algorithm that searches and finds density peaks[J].CAAI Transactions on Intelligent Systems,2017,12(02):229-235.[doi:10.11992/tis.201512036]
点击复制

一种改进的搜索密度峰值的聚类算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
229-235
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
An improved clustering algorithm that searches and finds density peaks
作者:
淦文燕 刘冲
解放军理工大学 指挥信息系统学院, 江苏 南京 210007
Author(s):
GAN Wenyan LIU Chong
College of Command Information System, PLA University of Science and Technology, Nanjing 210007, China
关键词:
数据挖掘聚类算法核密度估计
Keywords:
data miningclustering algorithmskernel density estimationentropy
分类号:
TP311
DOI:
10.11992/tis.201512036
摘要:
聚类是大数据分析与数据挖掘的基础问题。刊登在2014年《Science》杂志上的文章《Clustering by fast search and find of density peaks》提出一种快速搜索密度峰值的聚类算法,算法简单实用,但聚类结果依赖于参数dc的经验选择。论文提出一种改进的搜索密度峰值的聚类算法,引入密度估计熵自适应优化算法参数。对比实验结果表明,改进方法不仅可以较好地解决原算法的参数人为确定的不足,而且具有相对更好的聚类性能。
Abstract:
Clustering is a fundamental issue for big data analysis and data mining. In July 2014, a paper in the Journal of Science proposed a simple yet effective clustering algorithm based on the idea that cluster centers are characterized by a higher density than their neighbors and having a relatively large distance from points with higher densities. The proposed algorithm can detect clusters of arbitrary shapes and differing densities but is very sensitive to tunable parameter dc. In this paper, we propose an improved clustering algorithm that adaptively optimizes parameter dc. The time complexity of our algorithm was super-linear with respect to the size of the dataset. Further, our theoretical analysis and experimental results show the effectiveness and efficiency of our improved algorithm.

参考文献/References:

[1] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[2] MANYIKA J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity[M]. McKinsey Global Institute, 2011.
[3] HAN Jiawei, KAMBER M, PEI Jian. Data mining: concepts and techniques[M]. 3rd ed. Burlington: Morgan Kaufmann, 2011.
[4] JAIN A K. Data clustering: 50 years beyond k-means[Z]. Pattern Recognition Letters, 2009.
[5] 唐杰, 东昱晓, 蒋朦, 等. SIGKDD二十周年庆典[J]. 中国计算机学会通讯, 2014, 10(10): 58-64.
[6] http://comments.sicencemag.org/content/10.1126/science.1242072 (请核对网址及补充文献内容)
[7] 淦文燕, 李德毅. 基于核密度估计的层次聚类算法[J]. 系统仿真学报, 2004, 16(2): 302-305. GAN Wenyan, LI Deyi. Hierarchical clustering based on kernel density estimation[J]. Journal of System Simulation, 2004, 16(2): 302-305.
[8] ESTER M, KRIEGEL H, SANDER J, et al. A density based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd international conference on knowledge discovery and data mining. Portland, 1996: 226-231.
[9] GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation[J]. ACM transactions on knowledge discovery from data, 2007, 1(1): Article No.4.

相似文献/References:

[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(02):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,1(02):31.
[2]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(02):8.
[3]朱 林,王士同,修 宇.鲁棒的模糊方向相似性聚类算法[J].智能系统学报,2008,3(01):43.
 ZHU Lin,WANG Shi-tong,XIU Yu.A robust clustering algorithm with fuzzy directional similarity[J].CAAI Transactions on Intelligent Systems,2008,3(02):43.
[4]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,7(03):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,7(02):189.
[5]李海林,郭韧,万校基.基于特征矩阵的多元时间序列最小距离度量方法[J].智能系统学报,2015,10(03):442.[doi:10.3969/j.issn.1673-4785.201405047]
 LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,10(02):442.[doi:10.3969/j.issn.1673-4785.201405047]
[6]郭瑛洁,王士同,许小龙.基于最大间隔理论的组合距离学习算法[J].智能系统学报,2015,10(6):843.[doi:10.11992/tis.201504027]
 GUO Yingjie,WANG Shitong,XU Xiaolong.Learning a linear combination of distances based on the maximum-margin theory[J].CAAI Transactions on Intelligent Systems,2015,10(02):843.[doi:10.11992/tis.201504027]
[7]汤建国,汪江桦,韩莉英,等.基于覆盖粗糙集的语言动力系统[J].智能系统学报,2014,9(02):229.[doi:10.3969/j.issn.1673-4785.201307018]
 TANG Jianguo,WANG Jianghua,HAN Liying,et al.Linguistic dynamic systems based on covering-based rough sets[J].CAAI Transactions on Intelligent Systems,2014,9(02):229.[doi:10.3969/j.issn.1673-4785.201307018]
[8]石磊,杜军平,周亦鹏,等.在线社交网络挖掘与搜索技术研究[J].智能系统学报,2016,11(6):777.[doi:10.11992/tis.201612007]
 SHI Lei,DU Junping,ZHOU Yipeng,et al.A survey on online social network mining and search[J].CAAI Transactions on Intelligent Systems,2016,11(02):777.[doi:10.11992/tis.201612007]
[9]陈爱国,王士同.基于极大熵的知识迁移模糊聚类算法[J].智能系统学报,2017,12(01):95.[doi:10.11992/tis.201602003]
 CHEN Aiguo,WANG Shitong.A maximum entropy-based knowledge transfer fuzzy clustering algorithm[J].CAAI Transactions on Intelligent Systems,2017,12(02):95.[doi:10.11992/tis.201602003]
[10]翟俊海,刘博,张素芳.基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J].智能系统学报,2017,12(03):397.[doi:10.11992/tis.201705004]
 ZHAI Junhai,LIU Bo,ZHANG Sufang.A feature selection approach based on rough set relative classification information entropy and particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2017,12(02):397.[doi:10.11992/tis.201705004]
[11]申彦,朱玉全.CMP上基于数据集划分的K-means多核优化算法[J].智能系统学报,2015,10(04):607.[doi:10.3969/j.issn.1673-4785.201411036]
 SHEN Yan,ZHU Yuquan.An optimized algorithm of K-means based on data set partition on CMP systems[J].CAAI Transactions on Intelligent Systems,2015,10(02):607.[doi:10.3969/j.issn.1673-4785.201411036]

备注/Memo

备注/Memo:
收稿日期:2015-12-31;改回日期:。
基金项目:国家自然科学基金项目(60974086).
作者简介:淦文燕,女,副教授。主要研究方向为人工智能,数据挖掘,机器学习;刘冲,男,硕士研究生,主要研究方向为大数据分析,数据挖掘。
通讯作者:刘冲. E-mail:lc1368542460@126.com.
更新日期/Last Update: 1900-01-01