[1]付昆,田金文,马懿超.多特征融合的异视角目标关联算法[J].智能系统学报,2020,15(5):847-855.[doi:10.11992/tis.202006037]
 FU Kun,TIAN Jinwen,MA Yichao.Target association from different perspectives based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15(5):847-855.[doi:10.11992/tis.202006037]
点击复制

多特征融合的异视角目标关联算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年5期
页码:
847-855
栏目:
学术论文—智能系统
出版日期:
2020-10-31

文章信息/Info

Title:
Target association from different perspectives based on multi-feature fusion
作者:
付昆1 田金文1 马懿超2
1. 华中科技大学 多谱信息处理国家级重点实验室,武汉 湖北 430074;
2. 北京机电工程研究所,北京 100074
Author(s):
FU Kun1 TIAN Jinwen1 MA Yichao2
1. College of Automation, National Key Laboratory of Multispectral Information Processing Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Beijing Electro-mechanical Engineering Institute, Beijing 100074, China
关键词:
目标关联异视角协同探测无人机多特征融合姿态数据拓扑特征颜色特征D-S证据理论
Keywords:
target associationdifferent perspectivecooperative detectionUAVmulti feature fusionattitude datatopological featurecolor featureD-S evidence theory
分类号:
TP391
DOI:
10.11992/tis.202006037
文献标志码:
A
摘要:
目标关联在协同多目标探测中具有重要意义,受视角变换等因素的影响,传统目标关联算法在异视角目标观测情况下效果较差。本文提出了一种基于拓扑特征与颜色特征融合的无人机协同侦查目标关联算法,通过利用无人机提供的位置、姿态及其搭载传感器获得的多维特征数据,提取出目标的拓扑特征及颜色特征,并通过D-S证据理论融合多维特征,完成对异视角目标群的关联。实验表明,这种算法框架能够有效帮助无人机完成对目标群的关联任务。
Abstract:
Target association has great significance in collaborative multi-target detection. As traditional target association algorithms are affected by factors such as changes in view angle, they are less effective when observing targets from different perspectives. This paper proposes a target association algorithm for collaborative reconnaissance by unmanned aerial vehicles (UAVs) based on the fusion of topological and color features. Using position, attitude, and multi-dimensional feature data obtained by the sensors in the UAV, the topological and color features of the target are extracted and the multi-dimensional features are then fused based on the Dempster–Shafer evidence theory to complete the association of target groups from different perspectives. Experiments show that this algorithm framework can effectively help UAVs to complete the task of target group association.

参考文献/References:

[1] VAN KEUK G. Sequential track extraction[J]. IEEE Transactions on aerospace and electronic systems, 1998, 34(4): 1135-1148.
[2] BAR-SHALOM Y, FORTMANN T E. Tracking and data association[M]. New York: Academic Press, 1988.
[3] CARLSON B D, EVANS E D, WILSON S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration[J]. IEEE transactions on aerospace and electronic systems, 1994, 30(1): 116-125.
[4] CHEN Ji, LEUNG H, LO T, et al. A modified probabilistic data association filter in a real clutter environment[J]. IEEE transactions on aerospace and electronic systems, 1996, 32(1): 300-313.
[5] 曾昊. 基于星载异类传感器的舰船编队目标数据关联方法研究[D]. 合肥: 国防科技大学, 2008.
ZENG Hao. Data association research about targets among ship formation based on heterogeneous spaceborne reconnaissance sensors[D]. Hefei: National University of Defense Technology, 2018.
[6] 赵健. 点模式匹配算法研究[D]. 合肥: 国防科技大学, 2012.
ZHAO Jian. The research on point pattern matching[D]. Hefei: National University of Defense Technology, 2012.
[7] ZENG Hao, WANG Zhuang. A ships data association algorithm based on the ships formation structure and ships attribute information[C]//2008 9th International Conference on Signal Processing. Beijing, China: IEEE, 2008: 2837-2841.
[8] 刘铮, 毛宏霞, 戴聪明, 等. 基于多源数据多特征融合的弱小目标关联研究[J]. 红外与激光工程, 2019, 48(5): 0526001
LIU Zheng, MAO Hongxia, DAI Congming, et al. Dim and small target association based on multi-source data and multi-feature fusion[J]. Infrared and laser engineering, 2019, 48(5): 0526001
[9] 王继阳, 陆军, 粟毅. 一种基于目标属性特征的多假设关联算法[J]. 计算机仿真, 2005, 22(1): 76-79, 83
WANG Jiyang, LU Jun, SU Yi. A multiple hypothesis association algorithm based on targets’ attribute data[J]. Computer simulation, 2005, 22(1): 76-79, 83
[10] 唐宏美. 基于电子与光学传感器的目标关联技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
TANG Hongmei. Research on technology of target association based on electronic sensor and optical sensor[D]. Harbin: Harbin Institute of Technology, 2013.
[11] 汤亚波, 徐守时. 基于D-S证据理论的多源遥感图像目标数据联合关联算法[J]. 中国科学技术大学学报, 2006, 36(5): 466-471
TANG Yabo, XU Shoushi. A united target data association algorithm based on D-S theory and multiple remote sensing images[J]. Journal of University of Science and Technology of China, 2006, 36(5): 466-471
[12] 孙寒涛. 基于状态和属性的多目标联合关联算法[J]. 应用科技, 2020, 47(3): 74-79
SUN Hantao. Multi-objective joint association algorithm based on state and attribute[J]. Applied science and technology, 2020, 47(3): 74-79
[13] 李文超, 邹焕新, 雷琳, 等. 目标数据关联技术综述[J]. 计算机仿真, 2014, 31(3): 1-5, 10
LI Wenchao, ZOU Huanxin, LEI Lin, et al. A survey of target data association[J]. Computer simulation, 2014, 31(3): 1-5, 10
[14] 代勤, 王延杰, 韩广良. 基于改进Hough变换和透视变换的透视图像矫正[J]. 液晶与显示, 2012, 27(4): 552-556
DAI Qin, WANG Yanjie, HAN Guangliang. Perspective image rectification based on improved Hough transformation and perspective transformation[J]. Chinese journal of liquid crystals and displays, 2012, 27(4): 552-556

相似文献/References:

[1]雷霆,朱承,张维明.贝叶斯网络的目标打击过程中关键行动选择方法[J].智能系统学报,2014,9(03):349.[doi:10.3969/j.issn.1673-4785.201310014]
 LEI Ting,ZHU Cheng,ZHANG Weiming.Bayes network based critical action selecting method in target striking process[J].CAAI Transactions on Intelligent Systems,2014,9(5):349.[doi:10.3969/j.issn.1673-4785.201310014]

备注/Memo

备注/Memo:
收稿日期:2020-06-23。
基金项目:国家自然科学基金项目(61273279)
作者简介:付昆,硕士研究生,主要研究方向为遥感图像处理、协同目标跟踪、计算机视觉;田金文,教授,博士生导师,中国电子学会高级会员,主要研究方向为计算机视觉及其应用、目标识别及应用、遥感图像信息处理、目标光学特性建模与成像仿真。主持国家自然科学基金项目1项,国家863项目多项。发表学术论文20余篇;马懿超,高级工程师,主要研究方向为信息融合、自动目标识别
通讯作者:田金文.E-mail:jwtian@mail.hust.edu.cn
更新日期/Last Update: 2021-01-15