[1]杨艳霞.一种基于模拟退火操作的混合差分进化算法[J].智能系统学报,2014,(01):109-114.[doi:10.3969/j.issn.1673-4785.201305027]
 YANG Yanxia.A hybrid differential evolutionary algorithm based on the simulated annealing operation[J].CAAI Transactions on Intelligent Systems,2014,(01):109-114.[doi:10.3969/j.issn.1673-4785.201305027]
点击复制

一种基于模拟退火操作的混合差分进化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2014年01期
页码:
109-114
栏目:
出版日期:
2014-02-25

文章信息/Info

Title:
A hybrid differential evolutionary algorithm based on the simulated annealing operation
作者:
杨艳霞
武汉科技大学城市学院 信息工程学部, 湖北 武汉 430083
Author(s):
YANG Yanxia
Department of Information Engineering, Wuhan University of Science and Technology City College, Wuhan 430083, China
关键词:
差分进化进化算法模拟退火欺骗问题等级问题
Keywords:
differential evolutionaryevolutionary algorithmsimulated annealingdeceptive problemhierarchical problem
分类号:
TP391.9
DOI:
10.3969/j.issn.1673-4785.201305027
摘要:
为了提高进化算法对大规模欺骗问题和等级问题这类复杂组合优化问题的求解能力, 提出了一种将模拟退火操作引入到差分进化算法的改进方法。该方法对随机产生的初始个体进行模拟退火操作, 对新个体进行退温操作, 经过若干次迭代后, 选择种群中最优解作为所求问题的解。利用模拟退火算子的突变搜索提高种群多样性, 使差分进化算法能更好地利用群体差异进行全局搜索。在实验中, 用各种类型的欺骗函数和具有树状结构的等级函数对算法进行仿真测试, 仿真结果表明该算法在初期保持了种群多样性, 在运行的后期能比较好地跳出局部最优解, 收敛到全局最优解附近。
Abstract:
In order to improve the ability of the evolutionary algorithm for solving such complicated combination and optimization problems as the massive deceptive problems and hierarchical problems, this paper proposes an improved algorithm, which introduces the simulated annealing operation into the differential evolutionary algorithm. Using this method, the simulated annealing operation is carried out for a randomly generated initial individual and the temperature-reducing operation is carried out for a new individual. After several times of iterations, the optimal solution in the population is taken as the solution to the question. By utilizing the mutation search of the simulated annealing operator to improve the diversity of the population, the differential evolutionary algorithm can better utilize colony differences for an overall search. In the experiment, various types of deceptive functions and the hierarchical functions with a tree-shape structure are applied to simulation testing of the algorithm. In the initial stage, the algorithm keeps diversity of the population; in the later stage, a local optimal solution may be generated, the convergence scope nears to the overall optimal solution. The simulation results show that the algorithm has advantage for the aspect of searching the overall optimal solution.

参考文献/References:

[1] 刘建平.基于混沌和差分进化的混合粒子群优化算法[J].计算机仿真, 2012, 29(2): 208-212.LIU Jianping. Hybrid particle swarm optimization algorithm based on chaos and differential evolution[J]. Computer Simulation, 2012, 29(2): 208-212.
[2] 刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策, 2007, 22(7): 721-729.LIU Bo, WANG Ling, JIN Yihui. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729.
[3] 徐斌,祁荣宾,钱锋.基于混合差分进化和alpha约束支配处理的多目标优化算法[J].控制理论与应用, 2012, 29(3): 353-360.XU Bin, QI Rongbin, QIAN Feng. Constrained multi-objective optimization with hybrid differential evolution and alpha constrained domination technique[J]. Control Theory & Applications, 2012, 29(3): 353-360.
[4] 刘若辰,焦李成,雷七峰,等.一种新的差分进化约束优化算法[J]. 西安电子科技大学学报:自然科学版, 2011, 38(1): 47-53.LIU Ruochen, JIAO Licheng, LEI Qifeng, et al. New differential evolution constrained optimization algorithm[J]. Journal of Xidian University: Natural Science, 2011, 38(1): 47-53.
[5] 张伟丰.引入模拟退火算子的差分进化算法性能研究[J].数值计算与计算机应用, 2011, 32(4): 301-304.ZHANG Weifeng. The performance research of differential evolution algorithm which introduced the simulated and annealing operator[J]. Journal on Numerical Methods and Computer Applications, 2011, 32(4): 301-304.
[6] 郑建国,王翔,刘荣辉.求解约束优化问题的ε-DE算法[J].软件学报, 2012, 23(9): 2374-2387.ZHENG Jianguo, WANG Xiang, LIU Ronghui. ε-differential evolution algorithm for constrained optimization problems[J]. Journal of Software, 2012, 23(9): 2374-2387.
[7] ZOU Dexuan, GAO Liqun. An efficient improved differential evolution algorithm[C]//The 31st Chinese Control Conference. Hefei, China, 2012: 2385-2390.
[8] LI Yinghai. Optimal scheduling of cascade hydropower system using grouping differential evolution algorithm[C]//2012 International Conference on Computer Science and Electronic Engineering. Hangzhou, China, 2012: 625-629.
[9] 陶新明,徐鹏,刘福荣,等.组合分布估计和差分进化的多目标优化算法[J].智能系统学报, 2013, 8(1): 39-45.TAO Xinmin, XU Peng, LIU Furong, et al. Multi-objective optimization algorithm composed of estimation of distribution and differential evolution[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 39-45.
[10] 杨振宇,唐珂.差分进化算法参数控制与适应策略综述[J].智能系统学报, 2011, 6(5): 415-423.YANG Zhengyu, TANG Ke. An overview of parameter control and adaptation strategies in differential evolution algorithm[J]. CAAI Transactions on Intelligent Systems, 2011, 6(5): 415-423.
[11] 阳春华,钱晓山,桂卫华.一种混沌差分进化和粒子群优化混合算法[J].计算机应用研究, 2011, 28(2): 439-441.YANG Chunhua, QIAN Xiaoshan, GUI Weihua. Hybrid algorithm of chaotic differential evolution and particle swarm optimization[J]. Application Research of Computers, 2011, 28(2):439-441.
[12] GOLDBERG D E, DEB K, KORB B. Messy genetic algorithms revisited: studies in mixed size and scale[J]. Complex Systems, 1990, 4(4): 415-444.
[13] 钟伟才,刘静,刘芳,等.组合优化多智能体进化算法[J].计算机学报, 2004, 27(10): 1341-1353.ZHONG Weicai, LIU Jing, LIU Fang, et al. Combinatorial optimization using multi-agent evolutionary algorithm[J]. Chinese Journal of Computers, 2004, 27(10): 1341-1353.
[14] 刘荣辉,郑建国.分区交叉差分进化算法及其约束优化[J].计算机科学, 2012, 39(2): 283-287.LIU Ronghui, ZHENG Jianguo. Subarea crossover differential evolution algorithm and its constrained optimization[J]. Computer Science, 2012, 39(2): 283-287.

相似文献/References:

[1]刘三阳,张晓伟.混合差分变异策略[J].智能系统学报,2008,(06):487.
 LIU San-yang,ZHANG Xiao-wei.A hybrid strategy for differential variation[J].CAAI Transactions on Intelligent Systems,2008,(01):487.
[2]颜学峰.优化岭参数的非线性岭回归及4-CBA含量软测量[J].智能系统学报,2006,(01):74.
 YAN Xue-feng.Modified nonlinear ridge regression with optimal ridge pa rameter and its application to 4-CBA soft sensor[J].CAAI Transactions on Intelligent Systems,2006,(01):74.
[3]杨振宇,唐珂.差分进化算法参数控制与适应策略综述[J].智能系统学报,2011,(05):415.
 YANG Zhenyu,TANG Ke.An overview of parameter control and adaptation strategiesin differential evolution algorithm[J].CAAI Transactions on Intelligent Systems,2011,(01):415.
[4]毕晓君,刘国安,肖婧.基于自适应差分进化的干线交通信号协调控制[J].智能系统学报,2012,(05):437.
 BI Xiaojun,LIU Guoan,XIAO Jing.Coordination and control of arterial traffic signalsbased on adaptive differential evolution[J].CAAI Transactions on Intelligent Systems,2012,(01):437.
[5]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,(01):172.[doi:10.11992/tis.201506024]
[6]刘柏森,张晔,张磊.一种用于大型舰船总体要素优化设计的约束多目标分解进化算法[J].智能系统学报,2016,(5):635.[doi:10.11992/tis.201605006]
 LIU Baisen,ZHANG Ye,ZHANG Lei.A constrained multi-objective decomposition evolutionary algorithmfor the overall element optimization design of large ship[J].CAAI Transactions on Intelligent Systems,2016,(01):635.[doi:10.11992/tis.201605006]
[7]丁青锋,尹晓宇.差分进化算法综述[J].智能系统学报,2017,(04):431.[doi:10.11992/tis.201605015]
 DING Qingfeng,YIN Xiaoyu.Research survey of differential evolution algorithms[J].CAAI Transactions on Intelligent Systems,2017,(01):431.[doi:10.11992/tis.201605015]

备注/Memo

备注/Memo:
收稿日期:2013-05-09。
基金项目:国家自然科学基金资助项目(70971020).
通讯作者:杨艳霞,女,1979年生,讲师,主要研究方向为数据挖掘与智能计算,发表学术论文20余篇.E-mail:yxy_job@163.com.
更新日期/Last Update: 1900-01-01