[1]丁青锋,尹晓宇.差分进化算法综述[J].智能系统学报,2017,(04):431-442.[doi:10.11992/tis.201605015]
 DING Qingfeng,YIN Xiaoyu.Research survey of differential evolution algorithms[J].CAAI Transactions on Intelligent Systems,2017,(04):431-442.[doi:10.11992/tis.201605015]
点击复制

差分进化算法综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年04期
页码:
431-442
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Research survey of differential evolution algorithms
作者:
丁青锋1 尹晓宇2
1. 华东交通大学 电气与自动化工程学院, 江西 南昌 330013;
2. 上海大学 特种光纤与光接入重点实验室, 上海 200072
Author(s):
DING Qingfeng1 YIN Xiaoyu2
1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China;
2. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
关键词:
差分进化启发式并行搜索差分策略控制参数种群结构混合优化收敛速度优化效率
Keywords:
differential evolution algorithmheuristic parallel searchdifferential strategiescontrol parameterpopulation structuremixed optimizationconvergence rateoptimization efficiency
分类号:
TP301
DOI:
10.11992/tis.201605015
摘要:
差分进化算法由于算法结构简单易于执行,并且具有优化效率高、参数设置简单、鲁棒性好等优点,因此差分进化算法吸引了越来越多研究者的关注。本文概述了差分进化算法的基本概念以及存在的问题,综述了差分进化算法的控制参数、差分策略、种群结构以及与其他最优化算法混合等4个方面改进策略并讨论它们各自的优缺点,为差分进化算法下一步的改进提出了参考方向。
Abstract:
Due to its simple algorithm structure, ease of performance, high optimization efficiency, simple parameter setting, and excellent robustness, the differential evolution (DE) algorithm has attracted increasing attention from researchers. In this paper, we outline the basic concepts of the DE algorithm as well as its limitations, and review four improvement strategies, including a control parameter, differential strategy, population structure, and mixing it with other optimization algorithms. We discuss the advantages and disadvantages of these strategies and suggest directions for future improvements to the DE algorithm.

参考文献/References:

[1] HOLLAND J H. Adaptation in natural and artificial systems[M]. MA:MIT press, 1975.
[2] FOGEL L J. Artificial intelligence through simulated evolution[M]. New York:John Wiley, 1966.
[3] RECHENBERG I. Evolutions strategie:optimierung texhnischer systeme nach prinzipien der biologischen evolution[M]. Stuttgart, Gemany:Frogmann Holzboog, 1973.
[4] FERRANTE N, VILLE T. Recent advances in differential evolution:a survey and experimental analysis[J]. Artificial intelligence, 2010, 33(1/2):61-106.
[5] STORN R, PRICE K. Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal global optimization, 1997, 11(4):341-359.
[6] GAO Z Q, PAN Z B, GAO J H. A new highly efficient differential evolution scheme and its application to waveform inversion[J]. IEEE geoscience and remote sensing letters, 2014, 11(10):1702-1706.
[7] ZHAN C J, SITU W C, YEUNG L F, et al. A parameter estimation method for biological systems modelled by ode/dde models using spline approximation and differential evolution algorithm[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2014, 11(6):1066-1076.
[8] LEI H, LI L, WU C H. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2015, 12(3):622-631.
[9] SHARMA N, ANPALAGAN A. Composite differential evolution aided channel allocation in OFDMA systems with proportional rate constraints[J]. Journal of communications and networks, 2014, 16(5):523-533.
[10] DING Y, JIAO Y C, ZHANG L, et al. Solving port selection problem in multiple beam antenna satellite communication system by using differential evolution algorithm[J]. IEEE transactions on antennas and propagation, 2014, 62(10):5357-5361.
[11] KRANJCIC D, STUMBERGER G. Differential evolution-based identification of the nonlinear Kaplan turbine model[J]. IEEE Transactions on energy conversion, 2014, 29(1):178-187.
[12] YAHIA H, LIOUANE N, DHIFAOUI R. Differential evolution method-based output power optimization of switched reluctance generator for wind turbine applications[J]. IET renewable power generation, 2014, 8(7):795-806.
[13] MARCIC T, STUMBERGER B, STUMBERGER G. Differential-evolution-based parameter identification of a line-start IPM synchronous motor[J]. IEEE transactions on industrial electronics, 2014, 61(11):5921-5929.
[14] BASETTI V, CHANDEL A K. Hybrid power system state estimation using Taguchi differential evolution algorithm[J]. IET science, measurement and technology, 2015, 9(4):449-466.
[15] XUE Y, ZHUANG Y, NI T Q, et al. Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem[J]. Journal of systems engineering and electronics, 2014, 25(1):59-68.
[16] ZHONG Y F, ZHAO L, ZHANG L P. An adaptive differential evolution endmember extraction algorithm for hyperspectral remote sensing imagery[J]. IEEE geoscience and remote sensing letters, 2014, 11(6):1061-1065.
[17] TANG L X, ZHAO Y, LIU J Y. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production[J]. IEEE transactions on evolutionary computation, 2014, 18(2):209-225.
[18] MANGOUD M A, ELRAGAL H M, ALASHARA M T. Design of time modulated concentric circular and concentric hexagonal antenna array using hybrid enhanced particle swarm optimisation and differential evolution algorithm[J]. IET microwaves, antennas and propagation, 2014, 8(9):657-665.
[19] CUKOVIC J P, KLOPCIC B, PETRUN M, et al. Optimization of resistance spot welding transformer windings using analytical successive approximation and differential evolution[J]. IEEE transactions on magnetics, 2014, 50(4):1-4.
[20] BAATAR N, PHAM M T, KOH C S. Multiguiders and non-dominate ranking differential evolution algorithm for multiobjective global optimization of electromagnetic problems[J]. IEEE transactions on magnetics, 2013, 49(5):2105-2108.
[21] RUBIO L A, GONZALEZ-ALVAREZ D L, VEGA-RODRIGUEZ M A, et al. MO-ABC/DE-multiobjective artificial bee colony with differential evolution for unconstrained multiobjective optimization[C]//Proceedings of the IEEE 13th International Symposium on Computational Intelligence and Informatics. Budapest, Hungary, 2012:157-162.
[22] COELHO L D S, MARIANI V C, FERREIRA D L, et al. Novel gamma differential evolution approach for multiobjective transformer design optimization[J]. IEEE transactions on magnetics, 2013, 49(5):2121-2124.
[23] WU L H, WANG Y N, YUAN X F, et al. Multiobjective optimization of HEV fuel economy and emissions using the self-adaptive differential evolution algorithm[J]. IEEE transactions on vehicular technology, 2011, 60(6):2458-2470.
[24] CHENG M Y, TRAN D H. Two-phase differential evolution for the multiobjective optimization of time-cost tradeoffs in resource-constrained construction projects[J]. IEEE transactions on engineering management, 2014, 61(3):450-461.
[25] SIKDAR U K, EKBAL A, SAHA S. Differential evolution based multiobjective optimization for biomedical entity extraction[C]//Proceeding of the International Conference on Advances in Computing, Communications and Informatics. New Delhi, India, 2014:1039-1044.
[26] CARAVGGI T G, LEBENSZTAJN L. A multiobjective approach of differential evolution optimization applied to electromagnetic problems[J]. IEEE transactions on magnetics, 2014, 50(2):625-628.
[27] 孟红云,张小华,刘三阳. 用于约束多目标优化问题的双群体差分进化算法[J].计算机学报, 2008, 31(2):228-235.MENG Hongyun, ZHANG Xiaohua, LIU Sanyang. A differential evolution based on double populations for constrained multi-objective optimization problem[J]. Chinese journal of computer, 2008, 31(2):228-235.
[28] 毕晓君,刘国安. 基于云差分进化算法的约束多目标优化实现[J]. 哈尔滨工程大学学报, 2012, 33(8):1022-1031.BI Xiaojun, LIU Guoan. A cloud differential evolutionary algorithm for constrained multi-objective optimization[J]. Journal of Harbin engineering university, 2012, 33(8):1022-1031.
[29] 郭俊,桂卫华,阳春华. 改进差分进化算法在铝电解多目标优化中的应用[J].中南大学学报:自然科学版, 2012, 43(1):184-188.GUO Jun, GUI Weihua, YANG Chunhua. An improved hybrid differential evolution algorithm used for multi-objective optimization of aluminum electrolysis[J]. Journal of central south university, 2012, 43(1):184-188.
[30] 严细辉,蔡伯根,宁滨,等. 基于差分进化的高速列车运行操纵的多目标优化研究[J]. 铁道学报, 2013, 35(9):65-71.YAN Xihui, CAI Bogen, NING Bin, et al. Research on multi-objective high-speed train operation optimization based on differential evolution[J]. Journal of the China railway society, 2013, 35(9):65-71.
[31] YANG M, LI C H, CAI Z H, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE transactions on cybernetics, 2015, 45(2):302-315.
[32] MUSRRAT A, MILLIE P, SINGH V P. An improved differential evolution algorithm for real parameter optimization problems[J]. International journal of recent trends in engineering, 2009, 1(5):63-65.
[33] PRICE K, STORE R, LAMPINCN J. Differential evolution-a practical approach to global optimization[M]. New York:Springer, 2005.
[34] ZAHARIE D. Critical values for the control parameters of differential evolution algorithm[C]//Proceedings of 8th International Mendel Conference on Soft Computing. Brno, Czech Republic, 2002:62-67.
[35] DAS S, SUGANTHAN P N. Differential evolution:a survey of the state-of-the-art[J]. IEEE transactions on evolutionary computation, 2011, 15(1):4-31.
[36] TANG L, DONG Y, LIU J. Differential evolution with an individual-dependent mechanism[J]. IEEE transactions on evolutionary computation, 2015, 19(4):560-574.
[37] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on evolutionary computation, 2009, 13(2):398-417.
[38] BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems[J]. IEEE transactions on evolutionary computation, 2006, 10(6):646-657.
[39] ZHANG J, SANDERSON A C. JADE:adaptive differential evolution with optional external archive[J]. IEEE transactions on evolutionary computation, 2009, 13(5):945-958.
[40] AHADZADEH B, MENHAJ M B. A modified differential evolution algorithm based on a new mutation strategy and chaos local search for optimization problems[C]//Proceedings of the 4th International Conference on Computer and Knowledge Engineering. Mashhad, Iran, 2014:468-473.
[41] SAHU B K, PATI S, PANDA S. Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional-integral derivative controller for automatic generation control of interconnected power system[J]. IET generation, transmission and distribution, 2014, 8(11):1789-1800.
[42] CHIOU J P, CHANG C F, SU CT. Ant direction hybrid differential evolution for solving large capacitor placement problems[J]. IEEE transactions on power systems, 2004, 19(4):1794-1800.
[43] RUDOLPH G. Self-adaptive mutations may lead to premature convergence[J]. IEEE transactions on evolutionary computation, 2001, 5(4):410-414.
[44] LAMPINEN J, ZELINKA I. On stagnation of the differential evolution algorithm[C]//Proceedings of the 6th International Mendel Conference on Soft Computing. Brno, Czech Republic, 2000:76-83.
[45] DAS S, KONAR A, CHAKRABORTY U K. Two improved differential evolution schemes for faster global search[C]//Proceedings of the Genetic Evolutionary Computation. Washington DC, USA, 2005:991-998.
[46] STORN R. Differential evolution research-trends and open questions[J]. Study in computational intelligence, 2008, 143:1-31.
[47] 邓可,林杰,张鹏. 基于信息熵的异类多种群蚁群算法[J].计算机工程与应用, 2008, 44(36):16-19.DENG Ke, LIN Jie, ZHANG Peng. Multiple heterogeneous ant colonies algorithm based on information entropy[J]. Computer engineering and applications, 2008, 44(36):16-19.
[48] 陈俊风,吴铁军.群体智能算法搜索策略的性质及对停滞现象的影响[J].系统工程理论与实践, 2013, 06:1587-1595.CHEN Junfeng, WU Tiejun. The property of search strategies of swarm intelligent algorithms and their influences on stagnation[J]. Systems engineering-theory and practice, 2013, 06:1587-1595.
[49] GÄMPERLE R, MVLLER S D, KOUMOUTSAKOS P. A parameter study for differential evolution[M]//Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, A. Grmela and N. E. Mastorakis, Eds. Interlaken, Switzerland:WSEAS Press, 2002:293-298.
[50] RÖNKKÖNEN J, KUKKONEN S, PRICE K V. Real-parameter optimization with differential evolution[C]//Proceedings of the IEEE Congress Evolutionary Computation. Edinburgh, UK, 2005, 1:506-513.
[51] WANG Y, CAI Z, ZHANG Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions evolutionary computation, 2011, 15(1):55-66.
[52] WANG Y, CAI Z, ZHANG Q. Enhancing the search ability of differential evolution through orthogonal crossover[J]. Information science, 2012, 185(1):153-177.
[53] ELSAYED S M, SARKER R A, RAR T. Differential evolution with automatic parameter configuration for solving the CEC2013 competition on real-parameter optimization[C]//Proceedings of the IEEE Congress Evolution Computation. Cancun, Mexico, 2013:1932-1937.
[54] LIU J, LAMPINEN J. A fuzzy adaptive differential evolution algorithm[C]//Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. Beijing, China, 2002, 9(6):606-611.
[55] BBASS H A. The self-adaptive Pareto differential evolution algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Honolulu, HI, USA, 2002:831-836.
[56] TEO J. Exploring dynamic self-adaptive populations in differential evolution[J]. Soft computation, 2006, 10(8):673-686.
[57] TANABE R, FUKUNAGA A. Success-history based parameter adaptation for differential evolution[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:71-78.
[58] TVRDÍK J, POLÁKOVÁR. Competitive differential evolution applied to CEC 2013 problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:1651-1657.
[59] COELHO L S, AYALA H V H, FREIRE R Z. Population’s variance based adaptive differential evolution for real parameter optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:1672-1677.
[60] NERI F, TIRRONEN V. Recent advances in differential evolution:a survey and experimental analysis[J]. Artificial intelligence review, 2010, 33(1):61-106.
[61] EPITROPAKIS M G, PLAGIANAKOS VP, VRAHATIS M N. Balancing the exploration and exploitation capabilities of the differential evolution algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Hong Kong, 2008:2686-2693.
[62] DAS S, ABRAHAM A, CHAKRABORTY U K, et al. Differential evolution using a neighborhood based mutation operator[J]. IEEE transactions on evolutionary computation, 2009, 13(3):526-553.
[63] TANG L, ZHAO Y, LIU J. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production[J]. IEEE transactions on evolutionary computation, 2014, 18(2):209-225.
[64] EPITROPAKIS M G, TASOULIS D K, PAVLIDIS N G, et al. Enhancing differential evolution utilizing proximity based mutation operators[J]. IEEE transactions on evolutionary computation, 2011, 15(1):99-119.
[65] LIN C, QING A, FENG Q. A new differential mutation base generator for differential evolution[J]. Journal of global optimization, 2011, 49(1):69-90.
[66] FAN H Y, LAMPINEN J. A trigonometric mutation operation to differential evolution[J]. Journal of global optimization, 2003, 27(1):105-129.
[67] QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Edinburgh, Scotland, UK, 2005:1785-1791.
[68] BISWAS S, KUNDU S, DAS S, et al. Teaching and learning best differential evolution with self adaptation for real parameter optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:1115-1122.
[69] WANG Y, CAI Z, ZHANG Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions on evolutionary computation, 2011, 15(1):55-66.
[70] MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied soft computing, 2011, 11(2):1679-1696.
[71] CARAFFINI F. Super-fit multicriteria adaptive differential evolution[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:1678-1685.
[72] BREST J, BO?KOVIÆ B, ZAMUDA A, et al. Mezura-Montes, real parameter single objective optimization using self-adaptive differential evolution algorithm with more strategies[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:337-383.
[73] ZAMUDA A, BREST J, MEZURA-MONTES E. Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:1925-1931.
[74] GONG W, CAI Z. Differential evolution with ranking-based mutation operators[J]. IEEE transactions on cybernetics, 2013, 43(6):2066-2081.
[75] LI H, ZHANG L, JIAO Y C. Solution for integer linear bilevel programming problems using orthogonal genetic algorithm[J]. Journal of systems engineering and electronics, 2014, 25(3):443-451.
[76] SCHMIDT H, THIERAUF G. A Combined heuristic optimization technique[J]. Advances in engineering software, 2005, 36(1):11-19.
[77] DUBREUIL M, GAGNÉC, PARIZEAU M. Analysis of a master-slave architecturefor distributed evolutionary computations[J]. IEEE transactions on systems, man and cybernetics, part B (cybernetics), 2006, 36(1):229-235.
[78] HERRERA F, LOZANO M. Gradual distributed real-coded genetic algorithms[J]. IEEE transactions on evolutionary computation, 2000, 4(1):43-63.
[79] ALBA E, DORRONSORO B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE transactions on evolutionary computation, 2005, 9(2):126-142.
[80] FOLINO G, PIZZUTI C, SPEZZANO G. Training distributed GP ensemble with aselective algorithm based on clustering and pruning for pattern classification[J]. IEEE transactions on evolutionary computation, 2008, 12(4):458-468.
[81] ROY G, LEE H, WELCH J L, et al. A distributed poolarchitecture for genetic algorithms[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 2009:1177-1184.
[82] DEPOLLI M, TROBEC R, FILIPIC B. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization[J]. Evolutionary computation, 2013, 21(2):261-291.
[83] KALEGARI D H, LOPES H S. An improved parallel differential evolution approach for protein structure prediction using both 2D and 3D off-lattice models[C]//Proceedings of the IEEE Symposium on Differential Evolution. Singapore, 2013:143-150.
[84] KUSHIDA J I, HARA A, TAKAHAMA T, et al. Island-based differential evolution with varying subpopulation size[C]//Proceedings of the IEEE 6th International Workshop on Computational Intelligence and Applications.Hiroshima, Japan, 2013:119-124.
[85] TAGAWA K, NAKAJIAMA K. Island-based differential evolution with panmictic migration for multi-core CPUs[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013:852-859.
[86] ALBA E, DORRONSORO B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE transactions on evolutionary computation, 2005, 9(2):126-142.
[87] DORRONSORO B, BOUVRY P L. Cellular genetic algorithms without additional parametres[J]. Journal of supercomputing, 2012, 63(3):816-835.
[88] CAO C, WANG L, ZHAO D. The research based on the discrete cellular ant algorithm in the geometric constraint solving[J]. Acta electronica sinica, 2011, 39(5):1127-1130.
[89] LU Y, LI M, LI L. The cellular genetic algorithm with evolutionary rule[J]. Acta electronica sinica, 2010, 38(7):1603-1607.
[90] NOMAN N, IBA H. Cellular differential evolution algorithm[C]//Proceedings of the Advances in Artificial Intelligence. Berlin Heidelberg:Springer, 2011:293-302.
[91] DORRONSORO B, BOUVRY P. Differential evolution algorithms with cellular populations[C]//Proceedings of the PPSN XI, Part Ⅱ, LNCS 6239. Berlin Heidelberg:Springer, 2010:320-330.
[92] NOROOZI V, HASHEMI A, MEYBODI M. CellularDE:a cellular based differential evolution for dynamic optimization problems[C]//Proceedings of the adaptive and natural computing algorithms. Berlin Heidelberg:Springer, 2011:340-349.
[93] BURCZYNSKI T, KUS W, DUGOSZ A, et al. Optimization and defect identification using distributed evolutionary algorithms[J]. Engineering applications artificial intelligence, 2004, 17(4):337-344.
[94] FOLINO G, SPEZZANO G. P-cage:an environment for evolutionary computation in peer-to-peer systems[J]. Genetic programming, 2006, 12(12):341-350.
[95] HERRERA F, LOZANO M, MORAGA C. Hierarchical distributed genetic algorithms[J]. International journal of intelligence systems. 1999, 14(11):1099-1121.
[96] ROY G, LEE H, WELCH J L, et al. A distributed pool architecture for genetic algorithms[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Trondheim, Norway, 2009:1177-1184.
[97] 邓泽喜,刘晓冀. 基于小生境的混沌变异差分进化算法[J].计算机工程与应用, 2010, 25:31-33.DENG Zexi, LIU Xiaoji. Chaotic mutation differential evolution algorithm combined with niche[J]. Computer engineering and applications, 2010, 25:31-33.
[98] 詹腾,张屹,朱大林,等.基于多策略差分进化的元胞多目标遗传算法[J]. 计算机集成制造系统, 2014, 06:1342-1351.ZHAN Teng, ZHANG Yi, ZHU Dalin, et al. Cellular multi-objective genetic algorithm based on multi-strategy differential evolution[J]. Computer integrated manufacturing systems, 2014,06:1342-1351.
[99] ZHANG J, ZHANG Y H, QIN P. Immune clonal differential evolution algorithm for multi-objective flexible job-shop scheduling problem[C]//Proceedings of the International Conference on Artificial Intelligence and Education (ICAIE). Hangzhou, China, 2010:73-76.

相似文献/References:

[1]刘三阳,张晓伟.混合差分变异策略[J].智能系统学报,2008,(06):487.
 LIU San-yang,ZHANG Xiao-wei.A hybrid strategy for differential variation[J].CAAI Transactions on Intelligent Systems,2008,(04):487.
[2]杨振宇,唐珂.差分进化算法参数控制与适应策略综述[J].智能系统学报,2011,(05):415.
 YANG Zhenyu,TANG Ke.An overview of parameter control and adaptation strategiesin differential evolution algorithm[J].CAAI Transactions on Intelligent Systems,2011,(04):415.
[3]毕晓君,刘国安,肖婧.基于自适应差分进化的干线交通信号协调控制[J].智能系统学报,2012,(05):437.
 BI Xiaojun,LIU Guoan,XIAO Jing.Coordination and control of arterial traffic signalsbased on adaptive differential evolution[J].CAAI Transactions on Intelligent Systems,2012,(04):437.
[4]杨艳霞.一种基于模拟退火操作的混合差分进化算法[J].智能系统学报,2014,(01):109.[doi:10.3969/j.issn.1673-4785.201305027]
 YANG Yanxia.A hybrid differential evolutionary algorithm based on the simulated annealing operation[J].CAAI Transactions on Intelligent Systems,2014,(04):109.[doi:10.3969/j.issn.1673-4785.201305027]

备注/Memo

备注/Memo:
收稿日期:2016-05-17。
基金项目:国家自然科学基金项目(61501186);江西省普通本科高校中青年教师发展计划访问学者专项资金项目;江西省自然科学基金项目(20171BAB202001);江西省教育厅科学基金项目(GJJ150491).
作者简介:丁青锋,男,1980年生,副教授,博士,主要研究方向为进化算法、限定空间无线通信系统、列车控制网络。主持国家自然科学基金、省自然科学基金等科研项目多项。发表学术论文20余篇,其中被SCI/EI检索10余篇;尹晓宇,男,1988年生,博士研究生,主要研究方向为差分进化算法、轨道交通无线信道测量。参与多项国家自然科学基金等科研项目。
通讯作者:丁青锋,E-mail:brandy724@sina.com.
更新日期/Last Update: 2017-08-25