[1]郭崇滨,郝矿荣,丁永生.基于止血机制的冗余并联机器人精准容错控制[J].智能系统学报,2012,7(04):321-326.
 GUO Chongbin,HAO Kuangrong,DING Yongsheng.Hemostasis mechanism based precise faulttolerant control for redundant parallel manipulator[J].CAAI Transactions on Intelligent Systems,2012,7(04):321-326.
点击复制

基于止血机制的冗余并联机器人精准容错控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年04期
页码:
321-326
栏目:
出版日期:
2012-08-25

文章信息/Info

Title:
Hemostasis mechanism based precise faulttolerant control for redundant parallel manipulator
文章编号:
1673-4785(2012)04-0321-06
作者:
郭崇滨12郝矿荣12丁永生12
1.东华大学 信息科学与技术学院,上海 201620;
2.数字化纺织服装技术教育部工程研究中心, 上海 201620
Author(s):
GUO Chongbin12 HAO Kuangrong12 DING Yongsheng12
1. College of Information Sciences and Technology, Donghua University, Shanghai 201620, China;
2. Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Shanghai 201620, China
关键词:
冗余并联机器人精准容错控制生理止血机制机械间隙协同智能控制
Keywords:
redundant parallel manipulator precise faulttolerant control physiological hemostasis mechanism mechanical clearance intelligent cooperative control
分类号:
TP242
文献标志码:
A
摘要:
冗余并联机器人具有冗余容错能力,能在局部故障的情况下继续工作.而设备的机械间隙无法完全避免,并且较难建立精准的机械间隙模型,因此基于运动学冗余的常规容错方法较难实现精准容错控制.基于生理止血调控机制,考虑冗余并联机器人控制特性和机械间隙因素,提出一种新颖的精准容错控制器.与止血机制类似,该控制器不但能够进行子通道误差优化,而且能进行全局故障辨识和容错补偿.利用2DOF冗余并联机器人进行了真实实验.结果表明,提出的精准容错控制器的控制精度和容错能力均比传统控制器有较大提高.
Abstract:
Due to redundancy fault tolerance, redundant parallel manipulator can continue working even when meeting some local faults. However, the manipulator’s mechanical clearance cannot be eliminated, and it is hard to establish a precise mechanical clearance model. Therefore, kinematic redundancybased conventional faulttolerant methods can hardly achieve precise faulttolerant control. Considering the control characteristic and mechanical clearance of the redundant parallel manipulator, based on the physiological hemostasis control mechanism, a novel precise faulttolerant controller (PFTC) is proposed. Similar to the hemostasis mechanism, the PFTC optimizes the subchannel, meanwhile, identifies global faults and makes faulttolerant compensation. A 2DOF redundant parallel manipulator was used for actual experiment. The result shows that comparing with conventional controller, the proposed PFTC owns better control precision and faulttolerant capability.

参考文献/References:

[1]NOTASH L, HUANG L. On the design of fault tolerant parallel manipulators[J]. Mechanism and Machine Theory, 2003, 38(1): 85101.
[2]YI Y, MCINROY J E, CHEN Y. Fault tolerance of parallel manipulators using task space and kinematic redundancy[J]. IEEE Transactions on Robotics, 2006, 22(5): 10171021.
[3]NOTASH L. A methodology for actuator failure recovery in parallel manipulators[J]. Mechanism and Machine Theory, 2011, 46(4): 454465.
[4]UKIDVE C S, MCINROY J E, JAFARI F. Using redundancy to optimize manipulability of stewart platforms[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(4): 475479.
[5]SONG Q, YIN L. Robust adaptive fault accommodation for a robot system using a radial basis function neural network[J]. International Journal of Systems Science, 2001, 32(2): 195204.
[6]ZHANG K, JIANG B, STAROSWIECKI M. Dynamic output feedback fault tolerant controller design for TakagiSugeno fuzzy systems with actuator faults[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(1): 194201.
[7]TINSR, TERRA M H, BERGERMAN M. A fault tolerance framework for cooperative robotic manipulators[J]. Control Engineering Practice, 2007, 15(5): 615625.
[8]TYURIN K V, KHANIN M A. Hemostasis as an optimal system[J]. Mathematical Biosciences, 2006, 204(2): 167184.
[9]郭崇滨, 郝矿荣,丁永生. 基于神经内分泌的并联机器人智能控制系统[J]. 机电工程, 2010(7): 14, 8.
GUO Chongbin, HAO Kuangrong, DING Yongsheng. Parallel robot intelligent control system based on neuroendocrine method[J]. Journal of Mechanical & Electrical Engineering, 2010(7): 14, 8.
[10]ZHAO J, ZHANG K, YAO X. Study on fault tolerant workspace and fault tolerant planning algorithm based on optimal initial position for two spatial coordinating manipulators[J]. Mechanism and Machine Theory, 2006, 41(5): 584595.
[11]ROBERTS R G, YU H G, MACIEJEWSKI A A. Fundamental limitations on designing optimally faulttolerant redundant manipulators[J]. IEEE Transactions on Robotics, 2008, 24(5): 12241237.
[12]GUO C, HAO K, DING Y, et al. A positionvelocity cooperative intelligent controller based on the biological neuroendocrine system[J]. Lecture Notes in Computer Science, 2011, 6677(3): 112121.
[13]MCINROY J E, O’BRIEN J F, NEAT G W. Precise, faulttolerant pointing using a Stewart platform[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1): 9195.
[14]ZHOU N, HAO K, GUO C, et al. Visual servo control system of 2DOF parallel robot[J]. Software Engineering and Knowledge Engineering: Theory and Practice, 2012, 114: 425433.

备注/Memo

备注/Memo:
收稿日期: 2012-05-31.
网络出版日期:2012-07-12.
基金项目:国家自然科学基金重点资助项目(61134009);国家自然科学基金资助项目(60975059,60775052);国家ITER计划国内配套研究资助项目(2010GB108004);教育部高等学校博士学科点专项科研基金资助项目(20090075110002);上海市优秀学术带头人计划资助项目(11XD1400100);上海市科学技术委员会重点基础研究资助项目(11JC1400200, 10JC1400200);上海市科学技术委员会技术标准专项资助项目(10DZ0506500).
通信作者:郝矿荣.
E_mail:krhao@dhu.edu.cn.
作者简介:
郭崇滨,男,1986年生,博士研究生,主要研究方向为机器人多目标协同智能控制. 2010年获全国研究生数学建模二等奖,获得授权国家发明专利1项,发表学术论文8篇. 
 郝矿荣,女,1964年生,教授,博士生导师,博士,主要研究方向为机器视觉、模式识别、智能机器人、智能控制等. 获得国家发明专利授权10余项,发表学术论文100余篇,出版专著1部. 
丁永生,男,1967年生,教授,博士生导师,博士,主要研究方向为智能系统、网络智能、智能机器人、生物信息学、数字化纺织等.获得国家发明专利授权10余项,发表学术论文300余篇,出版专著5部.
更新日期/Last Update: 2012-09-26