[1]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(03):271-277.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(03):271-277.
点击复制

使用稀疏约束非负矩阵分解算法的跨年龄人脸识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年03期
页码:
271-277
栏目:
出版日期:
2012-06-25

文章信息/Info

Title:
An agespan face recognition method based on  an NMF algorithm with sparseness constraints
文章编号:
1673-4785(2012)03-0271-07
作者:
杜吉祥翟传敏叶永青
华侨大学 计算机科学与技术学院,福建 厦门 361021
Author(s):
DU Jixiang ZHAI Chuanmin YE Yongqing
Department of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
人脸识别跨年龄人脸识别非负矩阵分解算法稀疏约束人脸老化模拟虚拟样本
Keywords:
face recognition agespan face recognition nonnegative matrix factorization algorithm sparseness constraints facial aging simulation virtual samples
分类号:
TP391
文献标志码:
A
摘要:
人脸识别技术中除光线、姿态、表情因素外,由于年龄变化而导致的人脸形状和纹理上的变化会极大程度地影响人脸识别系统性能.对此,提出了一种使用稀疏非负矩阵分解算法来实现人脸老化模拟,然后将此方法应用于具有年龄跨度的人脸识别上,通过模拟虚拟样本来增强识别效果.实验结果表明,年龄跨度对人脸识别的确有较大的影响;当系数矩阵保持稀疏时,非负矩阵分解算法具有更强的特征提取能力;经过老化模拟增加虚拟样本后,其纹理老化效果明显地提高了跨年龄段的人脸识别的性能.
Abstract:
For face recognition technology, apart from lighting, gesture, and expression factors, variations in shape and texture of human faces due to aging factors also significantly affect the performance of face recognition systems. Using a sparseconstrained nonnegative matrix factorization (NMF) algorithm, a facial aging simulation method based on an improved prototype was first proposed and then applied to agespan face recognition to add virtual samples and heighten the recognition rate. Experimental results show that the age span indeed has a great effect on face recognition; the NMF algorithm has stronger feature extraction ability when the coefficient matrix is sparsely constrained. Furthermore, the recognition ratio is apparently improved after adding additional virtual samples by aging simulation of face texture features. 

参考文献/References:

[1]PHILLIPS P J, SCRUGGS W T, O’TOOLE A J, et al. FRVT 2006 and ICE 2006 largescale results: Technical Report NISTIR 7408[R]. Gaithersburg, USA: National Institute of Standards and Technology, 2007.
[2]RAMANATHAN N, CHELLAPPA R. Face verification across age progression[J]. IEEE Transactions on Image Processing, 2006, 15(11): 33493361.
[3]TODD J T, MARK L S, SHAW R E, et al. The perception of human growth[J]. Scientific American, 1980, 242(2): 132144.
[4]BURT M, PERRETT D. Perception of age in adult Caucasian male faces computer graphic manipulation of shape and colour information[J]. Proceedings of the Royal Society B: Biological Sciences, 1995, 259(1355): 137143.
[5]TIDDEMAN B, BURT M, PERRETT D. Prototyping and transforming facial texture for perception research[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 4250.
[6]许志维,张轩庭.基于非负矩阵分解演算法预测未来人脸影像[C]//2005年消费者电子信号处理研讨会. [S.l.], China, 2005: 18.
 XU Zhiwei, ZHANG Xuanting. Prediction of future facial image based on NMF algorithm[C]//Proceedings of the 2005 Workshop on Consumer Electronics and Signal Processing (WCEsp2005). [S.l.], China: 2005: 18.
[7]王章野,曹玫璇,李理,等.基于个性化原型的人脸衰老图像合成[J].电子学报, 2009, 37(4A): 118124.
WANG Zhangye, CAO Meixuan, LI li, et al. Individual prototyping based facial aging image synthesis[J]. Chinese Journal of Electronics, 2009, 37(4A): 118124.
[8]HOYER P O. Nonnegative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5: 14571469.
[9]JENKINS R, BURTON A M, WHITE D. Face recognition from unconstrained images: progress with prototypes[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Washington, DC, USA: IEEE Computer Society, 2006: 2530.
[10]戴欢,吴小俊.基于图像欧式距离的人脸描述和识别方法[J].江南大学学报:自然科学版, 2009, 8(1): 2023.
DAI Huan, WU Xiaojun. Face representation and recognition based on image Euclidean distance[J]. Journal of Jiangnan University: National Science Edition, 2009, 8(1): 2023.
[11]Face and Gesture Recognition Research Network. FGNet aging database[EB/OL]. [20111207]. http://www.fgnet.rsunit.com/.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(03):25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(03):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(03):213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(03):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(03):531.
[5]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(01):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(03):12.[doi:10.3969/j.issn.1673-4785.201312064]
[6]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(03):912.[doi:10.11992/tis.201509025]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(03):279.[doi:10.11992/tis.201603026]
[8]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
[9]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(05):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(03):616.[doi:10.11992/tis.201706025]
[10]余拓,陈莹.基于加权边缘弱化引导滤波的人脸光照补偿[J].智能系统学报,2018,13(03):373.[doi:10.11992/tis.201612011]
 YU Tuo,CHEN Ying.Face illumination compensation based on weighted edge-weakening guided image filter[J].CAAI Transactions on Intelligent Systems,2018,13(03):373.[doi:10.11992/tis.201612011]

备注/Memo

备注/Memo:
收稿日期:2011-12-08.网络出版日期:2012-05-27.
基金项目:国家自然科学基金资助项目(61175121);教育部新世纪优秀人才支持计划资助项目(NCET100117);福建省自然科学基金资助项目(2011J01349);福建省高等学校杰出青年科研人才培育计划资助项目(JA10006);福建省教育厅科技计划资助项目(JA11004);华侨大学侨办科研基金资助项目(11QZR05);华侨大学基本科研业务费专项基金资助项目(JBSJ1003).
通信作者:杜吉祥. E-mail: jxdu@hqu.edu.cn.
作者简介:
杜吉祥,男,1977年生,副教授,工学博士,福建省计算机学会理事,主要研究方向为模式识别、智能计算、数字图像处理等.主持国家自然科学基金、福建省自然科学基金、中国科学院知识创新工程重要方向项目子课题、中国博士后科学基金特别资助项目等科研项目10余项.曾获2010年安徽省科学技术一等奖,2011年第11届福建青年科技奖,入选教育部新世纪优秀人才支持计划和福建省高校杰出青年科研人才培育计划,发表学术论文40余篇.
翟传敏,女,1977年生,讲师,主要研究方向为模式识别、数字图像处理、计算机辅助设计等.
叶永青,男,1986年生,硕士研究生,主要研究方向为模式识别、数字图像处理等.
更新日期/Last Update: 2012-09-05