[1]余拓,陈莹.基于加权边缘弱化引导滤波的人脸光照补偿[J].智能系统学报,2018,13(03):373-379.[doi:10.11992/tis.201612011]
 YU Tuo,CHEN Ying.Face illumination compensation based on weighted edge-weakening guided image filter[J].CAAI Transactions on Intelligent Systems,2018,13(03):373-379.[doi:10.11992/tis.201612011]
点击复制

基于加权边缘弱化引导滤波的人脸光照补偿(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年03期
页码:
373-379
栏目:
出版日期:
2018-05-05

文章信息/Info

Title:
Face illumination compensation based on weighted edge-weakening guided image filter
作者:
余拓 陈莹
江南大学 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
Author(s):
YU Tuo CHEN Ying
Key Laboratory of Advanced Process Control for Light Industry Ministry of Education, Jiangnan University, Wuxi 214122, China
关键词:
人脸识别光照补偿光照模型高斯模糊引导滤波岭回归损失函数自商图
Keywords:
face recognitionillumination compensationillumination modelgaussian blurguided image filterridge regressionloss functionself-quotient image
分类号:
TP391
DOI:
10.11992/tis.201612011
摘要:
光照的变化是影响人脸识别结果的重要因素之一,针对这一问题,提出一种基于加权边缘弱化引导滤波的人脸光照补偿方法。首先为引导滤波损失函数添加一个可区分边缘细节的惩罚项,然后为惩罚项加权,加权系数由正面光照样本的类间平均脸计算得到,最后将滤波后的图像作为自商图中的平滑图,得到光照补偿图像。实验结果表明,该方法弱化了人脸平滑区域由光照造成的边缘细节噪声,且使用光照补偿图像作为人脸识别输入,能有效提高人脸识别准确率,特别在光照大范围变化时,识别准确率提升程度更高。
Abstract:
The variation of illumination is an important factor affecting the face recognition effect. Focusing on this problem, this study proposes a face illumination compensation based on a weighted edge-weakening guided image filter. First, a penalty item, whose edge details can be distinguished, was added into the loss function of the guided image filter. The penalty item was then weighted by a coefficient that was calculated by an inner-class mean face image of positive illumination samples. Finally, the filtered image was used as the smooth image in the self-quotient image to obtain the illumination compensation image. The experimental results showed that the proposed method can weaken the edge noise caused by the illumination in the smooth face area. Moreover, the face recognition rate can be improved using the illumination compensation image as the face recognition input, especially in the case of a large illumination variation.

参考文献/References:

[1] LIAN Zhichao, ER M J. Illumination normalisation for face recognition in transformed domain[J]. Electronics letters, 2010, 46(15):1060-1061.
[2] ZOU Jie, JI Qiang, NAGY G. A comparative study of local matching approach for face recognition[J]. IEEE transactions on image processing, 2007, 16(10):2617-2628.
[3] GUO Guodong, LI S Z, CHAN K. Face recognition by support vector machines[C]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble, France:IEEE, 2000:196-201.
[4] 叶剑锋, 王化明. AdaBoost检测结合SOM的自动人脸识别方法[J]. 哈尔滨工程大学学报, 2018, 39(1):129-134. YE Jianfeng, WANG Huaming. An automatic face recognition method using AdaBoost detection and SOM[J]. Journal of Harbin engineering university, 2018, 39(1):129-134.
[5] SHAN Shiguang, GAO Wen, CAO Bo, et al. Illumination normalization for robust face recognition against varying lighting conditions[C]//IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Nice, France:IEEE, 2003:157-164.
[6] AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns:application to face recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(12):2037-2041.
[7] TAN Xiaoyang, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE transactions on image processing, 2010, 19(6):1635-1650.
[8] DÉNIZ O, BUENO G, SALIDO J, et al. Face recognition using histograms of oriented gradients[J]. Pattern recognition letters, 2011, 32(12):1598-1603.
[9] LUO Yong, GUAN Yepeng. Enhanced facial texture illumination normalization for face recognition[J]. Applied optics, 2015, 54(22):6887-6894.
[10] GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many:illumination cone models for face recognition under variable lighting and pose[J]. IEEE transactions on pattern analysis and machine intelligence, 2001, 23(6):643-660.
[11] BLANZ V, VETTER T. Face recognition based on fitting a 3D morphable model[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(9):1063-1074.
[12] ZHANG Lei, SAMARAS D. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(3):351-363.
[13] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE transactions on image processing, 1997, 6(3):451-462.
[14] ZHANG Taiping, TANG Yuanyan, FANG Bin, et al. Face recognition under varying illumination using gradientfaces[J]. IEEE transactions on image processing, 2009, 18(11):2599-2606.
[15] WANG Haitao, LI S Z, WANG Yangsheng. Generalized quotient image[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA:IEEE, 2004, 2:Ⅱ-498-Ⅱ-505.
[16] WANG Biao, LI Weifeng, YANG Wenming, et al. Illumination normalization based on Weber’s law with application to face recognition[J]. IEEE signal processing letters, 2011, 18(8):462-465.
[17] BARADARANI A, WU Q M J, AHMADI M. An efficient illumination invariant face recognition framework via illumination enhancement and DD-DT WT filtering[J]. Pattern recognition, 2013, 46(1):57-72.
[18] HU Haifeng. Illumination invariant face recognition based on dual-tree complex wavelet transform[J]. IET computer vision, 2015, 9(2):163-173.
[19] CHEN Chao, SHEN Haibin. Illumination compensation method using edge-weakening guided image filter for face recognition[J]. Electronics letters, 2015, 51(19):1495-1497.
[20] HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(6):1397-1409.
[21] DRAPER N R, SMITH H. Applied regression analysis[M]. New York:John Wiley and Sons, 2014.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(03):25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(03):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(03):213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(03):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(03):531.
[5]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(03):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(03):271.
[6]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(01):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(03):12.[doi:10.3969/j.issn.1673-4785.201312064]
[7]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(03):912.[doi:10.11992/tis.201509025]
[8]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(03):279.[doi:10.11992/tis.201603026]
[9]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
[10]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(05):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(03):616.[doi:10.11992/tis.201706025]

备注/Memo

备注/Memo:
收稿日期:2016-12-09。
基金项目:国家自然科学基金项目(61573168).
作者简介:余拓,男,1993年生,硕士研究生,主要研究方向为人脸识别;陈莹,女,1976年生,教授,博士,CCF会员,主要研究方向为计算机视觉、模式识别。
通讯作者:陈莹.E-mail:chenying@jiangnan.edu.cn.
更新日期/Last Update: 2018-06-25