[1]刘冬宁,汤 庸,黄昌勤,等.时态查询语言的并发Lambek演算及范畴语法[J].智能系统学报,2009,4(03):245-250.
 LIU Dong-ning,TANG Yong,HUANG Chang-qin,et al.Concurrence Lambek calculus and its categorical grammar in temporal querying languages[J].CAAI Transactions on Intelligent Systems,2009,4(03):245-250.
点击复制

时态查询语言的并发Lambek演算及范畴语法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年03期
页码:
245-250
栏目:
出版日期:
2009-06-25

文章信息/Info

Title:
Concurrence Lambek calculus and its categorical grammar  in temporal querying languages
文章编号:
1673-4785(2009)03-0245-06
作者:
刘冬宁12汤  庸1黄昌勤13汤  娜1
1.中山大学 计算机科学系,广东 广州 510275;
2.中山大学 数学系,广东 广州 510275;
 3.华南师范大学 教育信息技术学院,广东 广州 510631
Author(s):
LIU Dong-ning12 TANG Yong1 HUANG Chang-qin13 TANG Na1
1.Department of Computer Science, Sun Yatsen University, Guangzhou 510275, China;
2. Department of Maths, Sun Yatsen University, Guangzhou 510275, China;
3.College of Educational Information Technology, South China Normal University, Guangzhou 510631, China
关键词:
时态查询语言句法分析并发的Lambek演算范畴语法
Keywords:
temporal querying language syntactic analysis concurrence Lambek calculus categorial grammars
分类号:
TP301
文献标志码:
A
摘要:
时态逻辑不可递归公理化的性质,造成它的公理化系统和证明论方法不适于时态查询语言的建模.这使得时态逻辑无法利用公理化系统的良好性质及相关证明论方法对时态数据库的推理和查询做更为严谨和细致地刻画.因此寻找时态逻辑的替代者,以公理化的方式对时态查询语言做句法和语义的分析是必要的.考虑的2个主要工具是作为句法分析工具的以Lambek演算为核心的范畴语法系统,和作为语义分析工具的类型演算λ演算.这主要是基于类型论的演算特点、SQL语句与陈述句的相似性、Lambek演算和λ演算的公理化与证明论方法,及它们作为句法和语义分析工具之间的密切联系与对应性决定的.据此从Lambek演算出发,结合时态的处理,构建了并发的Lambek演算(LCTQ)及相应的范畴语法,对以公理化系统为基础的时态查询语言的句法分析做相关研究,并从证明论性质上保障了计算性资源,使得系统更为严谨和完善.
Abstract:
Axiomatic systems and proof methods for temporal logic have so far found relatively few applications in querying language modeling of temporal databases because the standard temporal logic is not recursively axiomatizable. As a result, temporal logic can not use axiomatic systems and proof methods to religiously depict inference and querying of a temporal database. Thus it is necessary to find a replacement for temporal logic which, by axiomatic methods, can become the implement of a syntactic and semantic analysis of temporal querying languages. The Lambek calculus and its categorical grammar as the former and λcalculus as the latter have become those substitutes in this paper, because of the properties of type theory, the comparability between SQL and state sentence, the axiomatic and proof methods of Lambek calculus and λcalculus,and their correspondence by CurryHoward Isomorphism. So, according to the operations of temporality, we built a new axiomatic system used in syntactic analysis which is called concurrence Lambek calculus (LCTQ), and use its categorial grammar to deal with the temporal querying language. Prof theory shows that for protection of computable resources, LCTQ is more regorous and ideal.

参考文献/References:

[1】CHOMICKI J,TOMAN D.Temporal logic information systems[M]//CHOMICKI J, SAAKE G. Logics for databases and information systems. Norwell, USA: Kluwer Academic Publishers, 1998: 3170.
 [2]GABBAY D M, HODKINSON I, REYNOLDS M. Temporal logic: mathematical foundations and computational aspects [M]. New York, USA:Oxford University Press, 1994.
[3]BUSZKOWSKI W. Categorial grammars and substructural logics[C]//Proceedings of the 5th International Conference on Logic and Cognition. Guangzhou, China, 2006.
[4]RESTALL G. An introduction to substructural logics[M]. New York, USA: Routledge, 2000
[5]GER G.Anaphora and type logical grammar[M]. Dordrecht, the Netherlands: Springer, 2005.
[6]LAMBEK J. The mathematics of sentence structure[J]. The American Mathematical Monthly, 1958, 65: 154170.
[7]BARENDEGT H P. The lambda calculus: its syntax and semantics: volume 103 of studies in logic and the foundations of mathematics[M].Amsterdam, the Netherlands: Elsevier, 1984.
[8]PENTUS M. Lambek grammars are contextfree[C]//Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science. Montreal, Canada, 1993: 429433.
[9)PENTUS M. Lambek calculus is Lcomplete:Report LP 9314 [R]. Amsterdam: Institute for Logic, Language and Computation, University of Amsterdam, 1993.
 [10]PENTUS M. Models for the Lambek calculus[J]. Annals of Pure and Applied Logic, 1995, 75 (1/2): 179213.
[11]PENTUS M. Lambek caculus is NPcomplete: CUNY PhD Program in Computer Science Technical Report TR2003005[R]. New York: The Graduate Center, The City University of New York, 2003.
[12]CURRY H B, Some logic aspects of grammatical structure [C]//Proceedings of the Twelfth Symposium in Applied Mathematics. New York, USA: American Mathematical Society, 1961: 5668
[13]HOWARD W. The formulaeastypes notion of construction[M]//SELDIN J R, HINDLEY J P. To H B Curry: essays on combinatory logic, Lambda calculus and formalism. New York: Academic Press, 1980: 479490.
[14]RAO J H, K〖AKU¨〗NGAS P, MATSKIN M. Logicbased Web services composition: from service description to process model[C]// Proceedings of the IEEE International Conference on Web Services. Washington DC, USA: IEEE Computer Society, 2004: 446453.
 [15]UUSTALU T, VENE V. The essence of dataflow programming[J]. Lecture Notes in Computer Science, 2006, 4164: 135167.
[16]HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998.
[17]Research Team on Temporal Data Processing Component. TempDB[EB/OL]. [20080711]. http://www.cosoft.sysu.edu.cn/TempDB/index.htm, 2008.
[18]ALLEN J F. Maintaining knowledge about temporal intervals[J]. Communications of the ACM, 1983, 26(11): 832843.

备注/Memo

备注/Memo:
收稿日期:2008-07-15.
基金项目:
国家自然科学基金资助项目(60673135、60373081);
国家自然科学基金重点资助项目(60736020);
广东省自然科学基金资助项目(7003721);
广东省科技攻关资助项目(07B010200052);
广州市科技计划资助项目(07Z3D3191).
 通信作者:汤 庸. E-mail: issty@sysu.edu.cn.
作者简介:刘冬宁,男,1979年生,助理研究员,博士后,主要研究方向为人工智能逻辑、时态数据库.曾获罗克韦尔奖(Rockwell),发表学术论文20余篇. 
 汤 庸,男,1964年生,教授,博士生导师,博士.主要研究方向为时态信息处理.获教育部新世纪优秀人才支持计划、宝钢教育奖、丁颖科技奖;开发国内第一个时态数据库中间件软件TempDB. 发表的学术论文被SCI收录11篇,EI收录57篇. 
黄昌勤,男,1972年生,副教授,硕士生导师,博士.主要研究方向为服务(网格)计算、语义Web、Web智能等.2006年被遴选为广东省高等学校“千百十工程”第4批培养对象.发表学术论文20余篇,出版专著1部.
更新日期/Last Update: 2009-08-31