[1]潘正华,王勇.人工智能中的类比推理研究综述[J].智能系统学报,2023,18(4):643-661.[doi:10.11992/tis.202209002]
 PAN Zhenghua,WANG Yong.Review of research on analogical reasoning in artificial intelligence[J].CAAI Transactions on Intelligent Systems,2023,18(4):643-661.[doi:10.11992/tis.202209002]
点击复制

人工智能中的类比推理研究综述

参考文献/References:
[1] POLYA G. How to solve it: A new aspect of mathematical method[M]. Princeton: Princeton University Press, 2004.
[2] HOFSTADTER D R, SANDER E. Surfaces and essences: analogy as the fuel and fire of thinking[M]. New York: Basic Books, 2013.
[3] KEDAR-CABELLI S T. Analogy-from a unified perspective. analogical reasoning[M]. Netherlands: Kluwer Academic Publishers. 1988: 65?103.
[4] GENTNER D, FORBUS K D. Computational models of analogy[J]. WIREs cognitive science, 2011, 2(3): 266–276.
[5] HALL R P. Computational approaches to analogical reasoning: a comparative analysis[J]. Artificial intelligence, 1989, 39(1): 39–120.
[6] STERNBERG R J. Component processes in analogical reasoning[J]. Psychological review, 1977, 84(4): 353–378.
[7] HOLYOAK K J, MORRISON R G. The Cambridge handbook of thinking and reasoning[M]. New York: Cambridge University Press, 2005.
[8] GENTNER D, MARAVILLA F. International handbook of thinking & reasoning[M]. New York: Psychology Press, 2018: 186?203.
[9] EVANS T G. A heuristic program to solve geometric-analogy problems[C]//Proceedings of Spring Joint Computer Conference. New York: ACM, 1964: 327?338.
[10] EVANS T G. A program for the solution of a class of geometric analogy intelligence test questions[M]. Semantic Information Processing. Cambridge: MIT Press, 1968: 271?353.
[11] KLING R E. Reasoning by analogy with applications to heuristic problem solving: a case study[R]. Tech. Rept. (CS-216). Palo Alto: Stanford University, 1971.
[12] KLING R E. A paradigm for reasoning by analogy[J]. Artificial intelligence, 1971, 2(2): 147–178.
[13] CARBONELL J G. A computational model of analogical problem solving[C]//The 7th International Joint Conference on Artificial Intelligence. Vancouver: International Joint Conferences on Artificial Intelligence Organization, 1981: 147?152
[14] CARBONELL J G. Experiential learning in analogical problem solving[C]//Proceedings of the Second AAAI Conference on Artificial Intelligence. New York: ACM, 1982: 168?171.
[15] CARBONELL J G. Learning by analogy: formulating and generalizing plans from past experience[M]. Machine Learning. Amsterdam: Elsevier, 1983: 137?161.
[16] CARBONELL J G. Derivational analogy and its role in problem solving[C]//The Third National Conference on Artificial Intelligence. Washington: AAAI Press, 1983: 64?69.
[17] CARBONELL J G. Derivational analogy: a theory of reconstructive problem solving and expertise acquisition[J]. Machine learning, 1986, 2: 371–392.
[18] WINSTON P H. Learning and reasoning by analogy[J]. Communications of the ACM, 1980, 23(12): 689–702.
[19] WINSTON P H. Learning new principles from precedents and exercises[J]. Artificial intelligence, 1982, 19(3): 321–350.
[20] WINSTON P H. Learning by augmenting rules and accumulating censors[J]. Machine learning: an artificial intelligence approach, 1986, 2: 45–61.
[21] WINSTON P H, BINFORD T O, KATZ B, et al. Learning physical descriptions from functional definitions, examples, and precedents[C]//Proceedings of the Third AAAI Conference on Artificial Intelligence. New York: ACM, 1983: 433?439.
[22] BURSTEIN M H. A model of learning in analogical problem solving[C]//The Third National Conference on Artificial Intelligence. Washington: AAAI Prese, 1983: 45?48.
[23] BURSTEIN M H. Concept formation by incremental analogical reasoning and debugging[J]. Machine learning:an artificial intelligence approach, 1986, 2: 351–369.
[24] BURSTEIN M H. Analogical learning with multiple models[J]. Machine learning, 1986, 2: 25–28.
[25] GREINER R. Learning by understanding analogies[J]. Artificial intelligence, 1988, 35(1): 81–125.
[26] GENTNER D. The structure of analogical models in science[R]. Tech. Rept. (No. 4451). Cambridge: [s.n.], 1980: 1.
[27] GENTNER D. Structure-mapping: a theoretical framework for analogy[J]. Cognitive science, 1983, 7(2): 155–170.
[28] MARKMAN A B, GENTNER D. Structure mapping in the comparison process[J]. The American journal of psychology, 2000, 113(4): 501.
[29] FALKENHAINER B, FORBUS K D, GENTNER D. The structure-mapping engine: algorithm and examples[J]. Artificial intelligence, 1989, 41(1): 1–63.
[30] FORBUS K D, GENTNER D, LAW K. MAC/FAC: a model of similarity-based retrieval[J]. Cognitive science, 1995, 19(2): 141–205.
[31] GICK M L, HOLYOAK K J. Schema induction and analogical transfer[J]. Cognitive psychology, 1983, 15(1): 1–38.
[32] KEITH J, HOLYOAK. The pragmatics of analogical transfer[J]. Psychology of learning and motivation, 1985, 19: 59–87.
[33] HOLYOAK K J, KOH K. Surface and structural similarity in analogical transfer[J]. Memory & cognition, 1987, 15(4): 332–340.
[34] KEITH J, HOLYOAK. Analogical mapping by constraint satisfaction[J]. Cognitive science, 1989, 13(3): 295–355.
[35] HOLYOAK K J, THAGARD P R. A computational model of analogical problem solving[M]. Similarity and Analogical Reasoning. Cambridge: Cambridge University Press, 1989: 242?266.
[36] THAGARD P, HOLYOAK K J, NELSON G, et al. Analog retrieval by constraint satisfaction[J]. Artificial intelligence, 1990, 46(3): 259–310.
[37] HELMAR, GUST. Metaphors and heuristic-driven theory projection (HDTP)[J]. Theoretical computer science, 2006, 354(1): 98–117.
[38] SCHWERING A, KRUMNACK U, KüHNBERGER K U, et al. Syntactic principles of heuristic-driven theory projection[J]. Cognitive systems research, 2009, 10(3): 251–269.
[39] SCHMIDT M, KRUMNACK U, GUST H, et al. Heuristic-driven theory projection: an overview[M]. Berlin: Springer Berlin Heidelberg, 2014: 163?194.
[40] MICLET L, PRADE H. Logical definition of analogical proportion and its fuzzy extensions[C]//2008 Annual Meeting of the North American Fuzzy Information Processing Society. Piscataway: IEEE, 2008: 1?6.
[41] MICLET L, PRADE H. Handling analogical proportions in classical logic and fuzzy logics settings[M].Berlin: Springer Berlin Heidelberg, 2009: 638?650.
[42] PRADE H, RICHARD G. Analogy, paralogy and reverse analogy: postulates and inferences[C]//Lecture Notes in Artificial Intelligence. Berlin: Springer, 2009: 306?314.
[43] PRADE H, RICHARD G. Analogical proportions: another logical view[C]//Research and Development in Intelligent Systems XXVI. London: Springer, 2009: 121?134.
[44] PRADE H, RICHARD G. Logical proportions - typology and roadmap[M]. Berlin: Springer Berlin Heidelberg, 2010: 757?767.
[45] PRADE H, RICHARD G. Multiple-valued logic interpretations of analogical, reverse analogical, and paralogical proportions[C]//2010 40th IEEE International Symposium on Multiple-Valued Logic. Piscataway: IEEE, 2010: 258?263.
[46] PRADE H, RICHARD G. Nonmonotonic features and uncertainty in reasoning with analogical proportions[C]//The 13th International Workshop on Non-Monotonic Reasoning. Toronto: IEEE, 2010: 14?16.
[47] PRADE H, RICHARD G. Reasoning with logical proportions[C]//The 12th International Conference on Principles of Knowledge Representation and Reasoning. Toronto: AAAI press, 2010: 545?555.
[48] MICLET L, PRADE H, GUENNEC D. Looking for analogical proportions in a formal concept analysis setting[C]//The 8th International Conference on Concept Lattices and their Applications. Nancy: IEEE, 2011: 295?307.
[49] PRADE H, RICHARD G. Analogy-making for solving IQ tests: a logical view[M]. Berlin: Springer Berlin Heidelberg, 2011: 241?257.
[50] PRADE H, SCHOCKAERT S. Completing rule bases in symbolic domains by analogy making[C]//Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology. Paris: Atlantis Press, 2011: 928?934.
[51] PRADE H, RICHARD G. Analogical proportions and multiple-valued logics[M]. Berlin: Springer Berlin Heidelberg, 2013: 497?509.
[52] PRADE H, RICHARD G. Homogeneous logical proportions: their uniqueness and their role in similarity-based prediction[C]//The 13th International Conference on Principles of Knowledge Representation and Reasoning. Rome: AAAI press, 2012. 402?412.
[53] PRADE H, RICHARD G, YAO Bing. Enforcing regularity by means of analogy-related proportions-a new approach to classification[J]. International journal of computer information systems and industrial management applications, 2012, 4: 648–658.
[54] PRADE H, RICHARD G. Picking the one that does not fit-A matter of logical proportions[C]//Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology. Paris: Atlantis Press, 2013: 392?399.
[55] SCHOCKAERT S, PRADE H. Completing symbolic rule bases using betweenness and analogical proportion[C]//Studies in Computational Intelligence. Berlin: Springer, 2014: 195?215.
[56] PRADE H, RICHARD G. From analogical proportion to logical proportions: a survey[M]. Computational Approaches to Analogical Reasoning: Current Trends. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 217?244.
[57] PRADE H, RICHARD G. Analogical proportions and analogical reasoning - an introduction[M]. Case-Based Reasoning Research and Development. Cham: Springer International Publishing, 2017: 16?32.
[58] PRADE H. Analogical proportions: from equality to inequality[J]. International journal of approximate reasoning, 2018, 101: 234–254.
[59] LIM S, PRADE H, RICHARD G. Solving word analogies: a machine learning perspective[M]. Cham: Springer International Publishing, 2019: 238?250.
[60] BARBOT N, MICLET L, PRADE H. Analogy between concepts[J]. Artificial intelligence, 2019, 275(C): 487–539.
[61] AFANTENOS S, KUNZE T, LIM S, et al. Analogies between sentences: theoretical aspects-preliminary experiments[M]. Cham: Springer International Publishing, 2021: 3?18.
[62] CHIU A, POUPART P, DIMARCO C. Generating lexical analogies using dependency relations[J]. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Association for Computational Linguistics, 2007: 561?570.
[63] TURNEY P D. A uniform approach to analogies, synonyms, antonyms, and associations[C]//Proceedings of the 22nd International Conference on Computational Linguistics - Volume 1. New York: ACM, 2008: 905?912.
[64] TURNEY P D, LITTMAN M L. Corpus-based learning of analogies and semantic relations[J]. Machine learning, 2005, 60(1): 251–278.
[65] SPEER R, HAVASI C, LIEBERMAN H. Analogy space: reducing the dimensionality of common sense knowledge[C]//The 23rd National Conference on Artificial Intelligence. Chicago: AAAI Press, 2008: 548?553.
[66] VEALE T. An analogy-oriented type hierarchy for linguistic creativity[J]. Knowledge-based systems, 2006, 19(7): 471–479.
[67] VEALE T. Re-representation and creative analogy: a lexico-semantic perspective[J]. New generation computing, 2006, 24(3): 223–240.
[68] LANGLAIS P, PATRY A. Translating unknown words by analogical learning[C]//Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Association for Computational Linguistics, 2007: 877?886.
[69] BENAMARA F, TABOADA M, MATHIEU Y. Evaluative language beyond bags of words: linguistic insights and computational applications[J]. Computational linguistics, 2017, 43(1): 201–264.
[70] LEPAGE Y, DENOUAL E. Purest ever example-based machine translation: detailed presentation and assessment[J]. Machine translation, 2005, 19(3): 251–282.
[71] TURNEY P D. Similarity of semantic relations[J]. Computational linguistics, 2006, 32(3): 379–416.
[72] LIBERMAN H, KUMAR A. Providing expert advice by analogy for on-line help[C]//The 2005 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway: IEEE, 2005: 26?32.
[73] WANG S L, HONG T P, LIN Wenyang. Answering null queries by analogical reasoning on similarity-based fuzzy relational databases[J]. Journal of advanced computational intelligence and intelligent informatics, 2001, 5(3): 163–171.
[74] SIMOFF S, SIERRA C, LóPEZ DE MàNTARAS R. Mediation = information revelation + analogical reasoning[M]. Berlin: Springer Berlin Heidelberg, 2009: 145?160.
[75] STEIN S, LECHTHALER M, KRASSNITZER S, et al. Gear hobbing: a contribution to analogy testing and its wear mechanisms[J]. Procedia cirp, 2012, 1: 220–225.
[76] RAVEN J. The raven’s progressive matrices: change and stability over culture and time[J]. Cognitive psychology, 2000, 41(1): 1–48.
[77] RAGIN M, NEUBERT S. Solving Raven’s IQ-tests: an AI and cognitive modeling approach[C]//The 20th European Conference on Artificial Intelligence. Montpellier: IOS Press, 2012: 666?671.
[78] LOVETT A, FORBUS K D, USHER J. A structure- mapping model of Raven’s progressive matrices[C]//The 32nd Annual Conference of the Cognitive Science Society. Portland: Cognitive Science Society, 2010: 2761?2766.
[79] KLENK M, FORBUS K, TOMAI E, et al. Using analogical model formulation with sketches to solve bennett mechanical comprehension test problems[J]. Journal of experimental & theoretical artificial intelligence, 2011, 23(3): 299–327.
[80] BRECHER C, L?PENHAUS C, GRESCHERT R. Influence of the metalworking fluid on the running behavior of gear analogy test parts[J]. Production engineering, 2015, 9(3): 425–431.
[81] GALLASSI R, SAMBATI L, MASERATI M S, et al. Simple verbal analogies test: normative data on a short task exploring abstract thinking[J]. Aging clinical and experimental research, 2014, 26(1): 67–71.
[82] CURRIE A. Ethnographic analogy, the comparative method, and archaeological special pleading[J]. Studies in history and philosophy of science part A, 2016, 55: 84–94.
[83] JUDITH, CHARLIN. Testing an ethnographic analogy through geometric morphometrics: a comparison between ethnographic arrows and archaeological projectile points from Late Holocene Fuego-Patagonia[J]. Journal of anthropological archaeology, 2018, 51: 159–172.
[84] CROFT D, THAGARD P. Dynamic imagery: a computational model of motion and visual analogy[M]. Model-Based Reasoning. New York: Springer, 2002: 259?274.
[85] KUNDA M, MCGREGGOR K. A computational model for solving problems from the Raven’s Progressive Matrices intelligence test using iconic visual representations[J]. Cognitive systems research, 2013, 22/23: 47–66.
[86] DAVIES J, NERSESSIAN N J, GOEL A K. Visual models in analogical problem solving[J]. Foundations of science, 2005, 10(1): 133–152.
[87] CASAKIN H P, GOLDSCHMIDT G. Reasoning by visual analogy in design problem-solving: the role of guidance[J]. Environment and planning B:planning and design, 2000, 27(1): 105–119.
[88] HERTZMANN A, JACOBS C E, OLIVER N, et al. Image analogies[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 327?340.
[89] YANER P W, GOEL A K. Visual analogy: viewing analogical retrieval and mapping as constraint satisfaction problems[J]. Applied intelligence, 2006, 25(1): 91–105.
[90] DAVIES J, GOEL A K, NERSESSIAN N J. A cognitive model of visual analogical problem-solving transfer[C]//The Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh: International Joint Conferences on Artificial Intelligence Organization, 2005: 1556?1557.
[91] O’DONOGHUE D P, BOHAN A, KEANE M T. Seeing things: inventive reasoning with geometric analogies and topographic maps[J]. New generation computing, 2006, 24(3): 267–288.
[92] PEDONE R, HUMMEL J E, HOLYOAK K J. The use of diagrams in analogical problem solving[J]. Memory & cognition, 2001, 29(2): 214–221.
[93] SCHWERING A, KüHNBERGER K U, KRUMNACK U, et al. Spatial cognition of geometric figures in the context of proportional analogies[M]. Berlin: Springer Berlin Heidelberg, 2009: 18?35.
[94] AZZEH M, NEAGU D, COWLING P. Improving analogy software effort estimation using fuzzy feature subset selection algorithm[C]//Proceedings of the 4th international workshop on Predictor models in software engineering. New York: ACM, 2008: 71?78.
[95] LI Jingzhou, RUHE G. A comparative study of attribute weighting heuristics for effort estimation by analogy[C]//Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering. New York: ACM, 2006: 66?74.
[96] PARITOSH P K, KLENK M E. Cognitive processes in quantitative estimation: analogical anchors and causal adjustment[C]//the 28th Annual Conference of the Cognitive Science Society. Hillsdale: Lawrence Erlbaum Associates, 2006: 1926–1931.
[97] SWAN J, KRAWIEC K. Discovering relational structure in program synthesis problems with analogical reasoning[M]. Genetic and Evolutionary Computation. Cham: Springer International Publishing, 2018: 149?164.
[98] SCHOCKAERT S, PRADE H. Interpolation and extrapolation in conceptual spaces: a case study in the music domain[M]. Berlin: Springer Berlin Heidelberg, 2011: 217?231.
[99] SCHOCKAERT S, PRADE H. Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces[J]. Artificial intelligence, 2013, 202: 86–131.
[100] SOTOUDEH M, THAKUR A V. Analogy-making as a core primitive in the software engineering toolbox[C]//Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. New York: ACM, 2020: 101?121.
[101] PEASE A, GUHE M, SMAILL A. Analogy formulation and modification in geometry[C]//The Second International Conference on Analogy. Sofia: NBU Press, 2009: 358?364.
[102] PEASE A, GUHE M, SMAILL A. Using analogies to find and evaluate mathematical conjectures[C]//The 1st International Conference on Computational Creativity. Lisbon, IEEE, 2010: 60-64.
[103] WHITTLE J, BUNDY A, BOULTON R. Proofs-as-programs as a framework for the design of an analogy-based ML editor[J]. Formal aspects of computing, 2002, 13(3/4/5): 403–421.
[104] VAMVAKOUSSI X. The use of analogies in mathematics instruction: affordances and challenges[M]//Cognitive Foundations for Improving Mathematical Learning. Amsterdam: Elsevier, 2019: 247?268.
[105] DANNY A J. GóMEZ R. Artificial mathematical intelligence: cognitive, (Meta)mathematical, Physical and Philosophical Foundations[M]. Cham: Springer International Publishing, 2020.
[106] AAMODT A, PLAZA E. Case-based reasoning: foundational issues, methodological variations, and system approaches[J]. AI communications, 1994, 7(1): 39–59.
[107] HüLLERMEIER E. Case-based approximate reasoning[M]. Dordrecht: Springer, 2007.
[108] CRAW S, WIRATUNGA N, ROWE R. Learning adaptation knowledge to improve case-based reasoning[J]. Artificial intelligence, 2006, 170(16/17): 1175–1192.
[109] D’AQUIN M, BADRA F, LAFROGNE S, et al. Case base mining for adaptation knowledge acquisition[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. New York: ACM, 2007: 750?755.
[110] LIEBER J, NAUER E. Adaptation knowledge discovery using positive and negative cases[M]. Cham: Springer International Publishing, 2021: 140?155.
[111] D’AQUIN M, LIEBER J, NAPOLI A. Adaptation knowledge acquisition: a case study for case-based decision support in oncology[J]. Computational intelligence, 2006, 22(3/4): 161–176.
[112] GU Dongxiao. A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis[J]. Artificial intelligence in medicine, 2017, 77: 31–47.
[113] LAMY J B, SEKAR B, GUEZENNEC G, et al. Explainable artificial intelligence for breast cancer: a visual case-based reasoning approach[J]. Artificial intelligence in medicine, 2019, 94: 42–53.
[114] BARTLETT C L, LIU Guanghui, BICHINDARITZ I. Classifying breast cancer tissue through DNA methylation and clinical covariate based retrieval[M]. Cham: Springer International Publishing, 2020: 82?96.
[115] OHANA B, DELANY S J, TIERNEY B. A case-based approach to cross domain sentiment classification[M]. Berlin: Springer Berlin Heidelberg, 2012: 284?296.
[116] ZHOU Feng, JIAO Jianxin, LINSEY J S. Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews[J]. Journal of mechanical design, 2015, 137(7): 071401.
[117] BERKA P. NEST: a compositional approach to rule-based and case-based reasoning[J]. Advances in artificial intelligence, 2011, 2011: 1–15.
[118] BERKA P. Sentiment analysis using rule-based and case-based reasoning[J]. Journal of intelligent information systems, 2020, 55(1): 51–66.
[119] LEE C H, CHEN C H, LI F, et al. Customized and knowledge-centric service design model integrating case-based reasoning and TRIZ[J]. Expert systems with applications, 2020, 143: 113062.
[120] LEAKE D, CRANDALL D. On bringing case-based reasoning methodology to deep learning[M]. Cham: Springer International Publishing, 2020: 343?348.
[121] LóPEZ-SáNCHEZ D, CORCHADO J M. A CBR system for image-based webpage classification: case representation with convolutional neural networks[C]// The Thirtieth International Florida Artificial Intelligence Research Society Conference. Marco Island: AAAI Press, 2017: 483-488.
[122] TURNER J T, FLOYD M W, GUPTA K M, et al. Novel object discovery using case-based reasoning and convolutional neural networks[M]. Cham: Springer International Publishing, 2018: 399?414.
[123] AMIN K, KAPETANAKIS S, ALTHOFF K D, et al. Answering with cases: a CBR approach to deep learning[M]. Cham: Springer International Publishing, 2018: 15?27.
[124] HOFFMANN M, MALBURG L, KLEIN P, et al. Using Siamese graph neural networks for similarity-based retrieval in process-oriented case-based reasoning[M]. Cham: Springer International Publishing, 2020: 229?244.
[125] HüLLERMEIER E. Towards analogy-based explanations in machine learning[M]. Cham: Springer International Publishing, 2020: 205?217.
[126] AGUDO B D. Mapping the challenges and opportunities of CBR for eXplainable AI[C]//Lecture Notes in Artificial Intelligence. Cham: Springe, 2019: I?II
[127] KEANE M T, KENNY E M. How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems[C]//Case-Based Reasoning Research and Development: 27th International Conference. New York: ACM, 2019: 155?171.
[128] NADEEM R, WU Huijun, PAIK H Y, et al. A case based deep neural network interpretability framework and its user study[M]. Cham: Springer International Publishing, 2019: 147?161.
[129] RECIO-GARCí-A J A, Dí-AZ-AGUDO B, PINO-CASTILLA V. CBR-LIME: a case-based reasoning approach to provide specific local interpretable model-agnostic explanations[M]. Cham: Springer International Publishing, 2020: 179?194.
[130] LI O, LIU Hao, CHEN Chaofan, et al. Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions[C]//the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018: 3530–3537.
[131] WEBER R O, JOHS A J, LI Jianfei, et al. Investigating textual case-based XAI[M]. Case-Based Reasoning Research and Development. Cham: Springer International Publishing, 2018: 431?447.
[132] LAWRENCE G, CALEB K, DAVID L. CBR confidence as a basis for confidence in black box systems[M].Cham: Springe, 2019: 95?109.
[133] KEANE M T, SMYTH B. Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI)[EB/OL]. (2020-05-26)[2022-09-01]. https://arxiv.org/abs/2005.13997.
[134] TEMRAZ M, KENNY E M, RUELLE E, et al. Handling climate change using counterfactuals: using counterfactuals in data augmentation to predict crop growth in an uncertain climate future[M]. Cham: Springer International Publishing, 2021: 216?231.
[135] CHEN X J, JIA S B, YANG X. A review: knowledge reasoning over knowledge graph[J]. Expert systems with applications, 2020, 141: 112948.
[136] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966–2994
[137] 李波, 赵沁平. 基于突出特征的类比联想[J]. 计算机学报, 1994, 17(9): 690–696
LI Bo, ZHAO Qinpin. Salient feature-based analogical reminding[J]. Chinese journal of computers, 1994, 17(9): 690–696
[138] 李波, 赵沁平. 基于相关性的类比求精[J]. 计算机学报, 1995, 18(3): 231–235
LI Bo, ZHAO Qinping. Relevance-directed analogical elaboration[J]. Chinese journal of computers, 1995, 18(3): 231–235
[139] 李波. 类比推理系统[J]. 计算机学报, 1995, 18(3): 231–235
LI Bo. BHARS: an analogical reasoning system[J]. Chinese journal of computers, 1995, 18(3): 231–235
[140] 赵沁平, 李波. 类比推理研究中的几个问题[J]. 模式识别与人工智能, 1995, 8(S1): 48–58
ZHAO Qinping, LI Bo. Discussion about several problems of analogical reasoning[J]. Pattern recognition and artificial intelligence, 1995, 8(S1): 48–58
[141] 李波, 罗玉龙, 赵沁平. 一种类比匹配原理及其实现[J]. 软件学报, 1996, 6(1): 8–16
LI Bo, LUO Yulong, ZHAO Qinping. An theory of analogical match and its implementation[J]. Journal of software, 1996, 6(1): 8–16
[142] 赵沁平, 李波. 类比推理的计算模型[J]. 软件学报, 1996, 7(3): 156–162
ZHAO Qinping, LI Bo. A computational model of analogical reasoning[J]. Journal of software, 1996, 7(3): 156–162
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘?? 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱? 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨?? 溢,杨?? 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

收稿日期:2022-09-01。
基金项目:国家自然科学基金项目(60973156, 61375004);南京大学计算机软件新技术国家重点实验室开放课题项目(KFKT2020B01).
作者简介:潘正华,教授,主要研究方向为AI中逻辑与推理、知识处理。主持国家自然科学基金项目3项、省自然科学 基金项目2项,获省、校级科研(项目、论文)成果奖7项,发表学术论文130余篇。;王勇,副教授,主要研究方向为AI中逻辑推理、最优化理论。主持和参与国家自然科学基金项目和基金青年项目、横向课题3项,江南大学“我最喜爱的老师”和“至善教学奖”获得者。发表学术论文18篇。
通讯作者:潘正华.E-mail:panzh@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com