[1]赵嘉,陈丹丹,肖人彬,等.一种基于最大最小策略和非均匀变异的萤火虫算法[J].智能系统学报,2022,17(1):116-130.[doi:10.11992/tis.202106018]
 ZHAO Jia,CHEN Dandan,XIAO Renbin,et al.A heterogeneous variation firefly algorithm with maximin strategy[J].CAAI Transactions on Intelligent Systems,2022,17(1):116-130.[doi:10.11992/tis.202106018]
点击复制

一种基于最大最小策略和非均匀变异的萤火虫算法

参考文献/References:
[1] FARAG M A, MOUSA A A, EL-SHORBAGY M A, et al. A new hybrid metaheuristic algorithm for multiobjective optimization problems[J]. International journal of computational intelligence systems, 2020, 13(1): 920–940.
[2] BAROCIO E, REGALADO J, CUEVAS E, et al. Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem[J]. IET generation, transmission & distribution, 2017, 11(4): 1012–1022.
[3] LIAGKOURAS K, METAXIOTIS K. Enhancing the performance of MOEAs: an experimental presentation of a new fitness guided mutation operator[J]. Journal of experimental & theoretical artificial intelligence, 2017, 29(1): 91–131.
[4] KHAN A, BAIG A R. Multi-objective feature subset selection using non-dominated sorting genetic algorithm[J]. Journal of applied research and technology, 2015, 13(1): 145–159.
[5] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182–197.
[6] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE transactions on evolutionary computation, 2014, 18(4): 577–601.
[7] LüCKEN C, BARáN B, BRIZUELA C. A survey on multi-objective evolutionary algorithms for many-objective problems[J]. Computational optimization and applications, 2014, 58(3): 707–756.
[8] KNOWLES J D, CORNE D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary computation, 2000, 8(2): 149–172.
[9] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE transactions on evolutionary computation, 1999, 3(4): 257–271.
[10] ADHAM A M, MOHD-GHAZALI N, AHMAD R. Performance optimization of a microchannel heat sink using the improved strength pareto evolutionary algorithm (SPEA2)[J]. Journal of engineering thermophysics, 2015, 24(1): 86–100.
[11] GADHVI B, SAVSANI V, PATEL V. Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II[J]. Procedia technology, 2016, 23: 361–368.
[12] QI Yutao, MA Xiaoliang, LIU Fang, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary computation, 2014, 22(2): 231–264.
[13] LIU Ruochen, ZHOU Runan, REN Rui, et al. Multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition[J]. Information sciences, 2020, 509: 420–436.
[14] BASSEUR M, LIEFOOGHE A, LE K, et al. The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems[J]. Journal of heuristics, 2012, 18(2): 263–296.
[15] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary computation, 2011, 19(1): 45–76.
[16] GUO Weian, CHEN Ming, WANG Lei, et al. Hyper multi-objective evolutionary algorithm for multi-objective optimization problems[J]. Soft computing, 2017, 21(20): 5883–5891.
[17] WANG Hongfeng, FU Yaping, HUANG Min, et al. A hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems[J]. Soft computing, 2017, 21(20): 5975–5987.
[18] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE transactions on evolutionary computation, 2004, 8(3): 256–279.
[19] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert systems with applications, 2016, 47: 106–119.
[20] YANG Shexin. Nature—Inspired metaheuristic algorithm[M]. Frome: Luniver Press, 2008.
[21] 赵嘉, 谢智峰, 吕莉, 等. 深度学习萤火虫算法[J]. 电子学报, 2018, 46(11): 2633–2641
ZHAO Jia, XIE Zhifeng, LYU Li, et al. Firefly algorithm with deep Learning[J]. Acta electronica sinica, 2018, 46(11): 2633–2641
[22] ZHAO Jia, CHEN Wenping, XIAO Renbin, et al. Firefly algorithm with division of roles for complex optimal scheduling[J]. Frontiers of information technology & electronic engineering, 2021, 22(10): 1311–1333.
[23] YANG Xinshe. Multiobjective firefly algorithm for continuous optimization[J]. Engineering with computers, 2013, 29(2): 175–184.
[24] TSAI C W, HUANG Yaoting, CHIANG Mingchao. A non-dominated sorting firefly algorithm for multi-objective optimization[C]//2014 14th International Conference on Intelligent Systems Design and Applications. New York, USA: 2014: 62-67.
[25] 谢承旺, 张飞龙, 陆建波, 等. 一种多策略协同的多目标萤火虫算法[J]. 电子学报, 2019, 47(11): 2359–2367
XIE Chengwang, ZHANG Feilong, LU Jianbo, et al. Multi-objective firefly algorithm based on multiply cooperative strategies[J]. Acta electronica sinica, 2019, 47(11): 2359–2367
[26] LYU L, ZHAO Jia, WANG Jiayuan, et al. Multi-objective firefly algorithm based on compensation factor and elite learning[J]. Future generation computer systems, 2019, 91: 37–47.
[27] 贾树晋, 杜斌, 岳恒. 基于局部搜索与混合多样性策略的多目标粒子群算法[J]. 控制与决策, 2012, 27(6): 813–818,826
JIA Shujin, DU Bin, YUE Heng. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm[J]. Control and decision, 2012, 27(6): 813–818,826
[28] ZHAO Xinchao, GAO Xiaoshan, HU Zechun. Evolutionary programming based on non-uniform mutation[J]. Applied mathematics and computation, 2007, 192(1): 1–11.
[29] BALLING R. The maximin fitness function; multi-objective city and regional planning[C]. International Conference on Evolutionary Multi-criterion Optimization, 2003: 1?15.
[30] 徐鸣, 沈希, 马龙华, 等. 一种多目标粒子群改进算法的研究[J]. 控制与决策, 2009, 24(11): 1713–1718,1728
XU Ming, SHEN Xi, MA Longhua, et al. Research on modified multi-objective particle swarm optimization[J]. Control and decision, 2009, 24(11): 1713–1718,1728
[31] GONG Maoguo, JIAO Licheng, ZHANG Xiangrong. A population-based artificial immune system for numerical optimization[J]. Neurocomputing, 2008, 72(1-3): 149–161.
[32] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary computation, 2000, 8(2): 173–195.
[33] DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]. Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, US: IEEE, 2002, 1: 825?830.
[34] TANG Lixin, WANG Xianpeng. A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems[J]. IEEE transactions on evolutionary computation, 2013, 17(1): 20–45.
[35] ZHENG Li ming, WANG Qiang, ZHANG Sheng xin, et al. Population recombination strategies for multi-objective particle swarm optimization[J]. Soft computing, 2017, 21(16): 4693–4705.
[36] XING Huanlai, WANG Zhaoyuan, LI Tianrui, et al. An improved MOEA/D algorithm for multi-objective multicast routing with network coding[J]. Applied soft computing, 2017, 59: 88–103.
[37] WANG Wan liang, LI Wei kun, WANG Zheng, et al. Opposition-based multi-objective whale optimization algorithm with global grid ranking[J]. Neurocomputing, 2019, 341: 41–59.
[38] ZITZLER E, KüNZLI S. Indicator-based selection in multiobjective search[C]//Parallel problem solving from nature-PPSN VIII. Birmingham, UK: Springer, 2004: 832?842.
[39] TRIPATHI P K, BANDYOPADHYAY S, PAL S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information sciences, 2007, 177(22): 5033–5049.
[40] LIANG J J, QU B Y, SUGANTHAN P N, et al. Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems[J]. 2012 IEEE congress on evolutionary computation, 2012: 1?8.
[41] CHEN Bili, ZENG Wenhua, LIN Yangbin, et al. A new local search-based multiobjective optimization algorithm[J]. IEEE transactions on evolutionary computation, 2015, 19(1): 50–73.
[42] TIAN Ye, ZHANG Xingyi, CHENG Ran, et al. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//2016 IEEE Congress on Evolutionary Computation. Vancouver, Canada. IEEE, 2016: 5222?5229.
相似文献/References:
[1]王 艳,曾建潮.多目标微粒群优化算法综述[J].智能系统学报,2010,5(5):377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
 WANG Yan,ZENG Jian-chao.A survey of a multiobjective particle swarm optimization algorithm[J].CAAI Transactions on Intelligent Systems,2010,5():377.[doi:10.3969/j.issn.1673-4785.2010.05.001]
[2]郭丽萍,李向涛,谷文祥,等.改进的萤火虫算法求解阻塞流水线调度问题[J].智能系统学报,2013,8(1):33.[doi:10.3969/j.issn.1673-4785.201205012]
 GUO Liping,LI Xiangtao,GU Wenxiang,et al.An improved firefly algorithm for the blocking flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2013,8():33.[doi:10.3969/j.issn.1673-4785.201205012]
[3]陶新民,徐鹏,刘福荣,等.组合分布估计和差分进化的多目标优化算法[J].智能系统学报,2013,8(1):39.[doi:10.3969/j.issn.1673-4785.201208035]
 TAO Xinmin,XU Peng,LIU Furong,et al.Multi objective optimization algorithm composed of estimation of distribution and differential evolution[J].CAAI Transactions on Intelligent Systems,2013,8():39.[doi:10.3969/j.issn.1673-4785.201208035]
[4]莫愿斌,马彦追,郑巧燕,等.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J].智能系统学报,2014,9(6):747.[doi:10.3969/j.issn.1673-4785.201309075]
 MO Yuanbin,MA Yanzhui,ZHENG Qiaoyan,et al.Improved firefly algorithm based on simplex method and its application in solving non-linear equation groups[J].CAAI Transactions on Intelligent Systems,2014,9():747.[doi:10.3969/j.issn.1673-4785.201309075]
[5]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():872.[doi:10.11992/tis.201505043]
[6]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9():127.[doi:10.3969/j.issn.1673-4785.201309064]
[7]张伟,乔俊飞.神经网络的污水处理过程多目标优化控制方法[J].智能系统学报,2016,11(5):594.[doi:10.11992/tis.201512022]
 ZHANG Wei,QIAO Junfei.Multi-objective optimization control for wastewatertreatment processing based on neural network[J].CAAI Transactions on Intelligent Systems,2016,11():594.[doi:10.11992/tis.201512022]
[8]屠传运,陈韬伟,余益民,等.膜系统下的一种多目标优化算法[J].智能系统学报,2017,12(5):678.[doi:10.11992/tis.201706013]
 TU Chuanyun,CHEN Taowei,YU Yimin,et al.Multi-objective optimization algorithm based on membrane system[J].CAAI Transactions on Intelligent Systems,2017,12():678.[doi:10.11992/tis.201706013]
[9]魏伟一,文雅宏.一种精英反向学习的萤火虫优化算法[J].智能系统学报,2017,12(5):710.[doi:10.11992/tis.201706014]
 WEI Weiyi,WEN Yahong.Firefly optimization algorithm utilizing elite opposition-based learning[J].CAAI Transactions on Intelligent Systems,2017,12():710.[doi:10.11992/tis.201706014]
[10]孟勤超,杨翠丽,乔俊飞.基于改进SPEA2算法的给水管网多目标优化设计[J].智能系统学报,2018,13(1):118.[doi:10.11992/tis.201701012]
 MENG Qinchao,YANG Cuili,QIAO Junfei.Multi-objective optimization design of water distribution systems based on improved SPEA2 algorithm[J].CAAI Transactions on Intelligent Systems,2018,13():118.[doi:10.11992/tis.201701012]

备注/Memo

收稿日期:2021-06-11。
基金项目:科技创新2030—“新一代人工智能”重大项目(2018AAA0101200); 国家自然科学基金项目(52069014,51669014); 江西省杰出青年基金项目(2018ACB21029).
作者简介:赵嘉,教授,主要研究方向为智能计算、模式识别、大数据分析;陈丹丹,硕士研究生,主要研究方向为智能计算;肖人彬,教授,博士生导师,主要研究方向为群智能、涌现计算、复杂系统建模与仿真。主持国家级项目多项,获得教育部、湖北省自然科学奖和科学进步奖5项。发表学术论文200余篇,入选Elsevier“中国高被引学者”榜单。
通讯作者:肖人彬. E-mail:rbxiao@hust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134