[1]许为,葛列众,高在峰.人-AI交互: 实现“以人为中心AI”理念的跨学科新领域[J].智能系统学报,2021,16(4):605-621.[doi:10.11992/tis.202012050]
 XU Wei,GE Liezhong,GAO Zaifeng.Human-AI interaction: An emerging interdisciplinary domain for enabling human-centered AI[J].CAAI Transactions on Intelligent Systems,2021,16(4):605-621.[doi:10.11992/tis.202012050]
点击复制

人-AI交互: 实现“以人为中心AI”理念的跨学科新领域(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年4期
页码:
605-621
栏目:
综述
出版日期:
2021-07-05

文章信息/Info

Title:
Human-AI interaction: An emerging interdisciplinary domain for enabling human-centered AI
作者:
许为1 葛列众1 高在峰2
1. 浙江大学 心理科学研究中心,浙江 杭州 310058;
2. 浙江大学 心理与行为科学系,浙江 杭州 310058
Author(s):
XU Wei1 GE Liezhong1 GAO Zaifeng2
1. Center for Psychological Sciences, Zhejiang University, Hangzhou 310058, China;
2. Department of Psychology, Zhejiang University, Hangzhou 310058, China
关键词:
人工智能人-人工智能交互自主化以人为中心的人工智能人机交互人因工程人-AI系统交互以人为中心设计
Keywords:
artificial intelligencehuman-artificial intelligence interactionautonomyhuman-centered artificial intelligencehuman-computer interactionhuman factors engineeringhuman-AI system interactionhuman-centered design
分类号:
TP3-05
DOI:
10.11992/tis.202012050
摘要:
AI技术造福了人类,也给研发带来了挑战,如果开发不当,会伤害人类和社会。目前国内外还没有系统的跨学科工作框架来有效地应对这些新挑战。为顺应学科发展的交叉趋势,中国国家自然科学基金委2020年成立了交叉科学部。在这样的背景下,本文分析AI系统研发面临的新挑战,进一步阐述我们在2019年提出的“以人为中心AI”(human-centered AI,HCAI)研发理念和设计目标。目前,HCAI研发理念在国外是AI界的热门课题之一,为推动 HCAI 理念的落实,本文系统地提出了人?人工智能交互(human-AI interaction,HAII)的跨学科新领域,定义了其目的、范围、研究和应用重点等。通过文献综述和分析,本文总结了国内外HAII研究和应用的重点,提出了今后的主要研究方向。最后,针对今后HCAI理念和HAII领域的工作,提出了一系列对策和建议。
Abstract:
The new characteristics of AI technology have brought new challenges to the research and development of AI systems. AI technology has benefited humans, but if improperly developed, it will harm humans. At present, there is no systematic interdisciplinary approach to effectively deal with these new challenges. This paper analyzes the new challenges faced by AI systems and further elaborates the “Human-Centered AI” (HCAI) approach we proposed in 2019. In order to enable the implementation of the HCAI approach, we systematically propose an emerging interdisciplinary domain of “Human-AI Interaction” (HAII), and define the objective, methodology, and scope. Based on literature review and analyses, this paper summarizes the main areas of the HAII research and application as well as puts forward the future research agenda for HAII. Finally, the paper provides strategic recommendations for future implementation of the HCAI approach and HAII work.

参考文献/References:

[1] ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented intelligence: collaboration and cognition[J]. Frontiers of information technology & electronic engineering, 2017, 18(2): 153-179.
[2] XU Wei. Toward human-centered AI: a perspective from human-computer interaction[J]. Interactions, 2019, 26(4): 42-46.
[3] 吴朝晖. 混合增强智能[EB/OL]. (2019-11-29) [2020-12-30]. https://www.wicongress.org/2020/zh/article/487.
WU Zhaohui. Hybrid augmented intelligence[EB/OL]. (2019-11-29) [2020-12-30] https://www.wicongress.org/2020/zh/article/487
[4] SHNEIDERMAN B. Design lessons from AI’s two grand goals: human emulation and useful applications[J]. IEEE transactions on technology and society, 2020, 1(2): 73-82.
[5] SHNEIDERMAN B. Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy Human-Centered AI Systems[J]. ACM transactions on interactive intelligent systems, 2020, 10(4): 26.
[6] MCGREGOR S. AI Incidents Database[EB/OL]. 2016, [2021-06-01] https://incidentdatabase.ai/.
[7] 许为. 五论以用户为中心的设计: 从自动化到智能时代的自主化以及自动驾驶车[J]. 应用心理学, 2020, 26(2): 108-128
XU Wei. User-centered design (V): from automation to the autonomy and autonomous vehicles in the intelligence era[J]. Chinese journal of applied psychology, 2020, 26(2): 108-128
[8] AUERNHAMMER J. Human-centered AI: the role of human-centered design research in the development of AI[M]//BOESS S, CHEUNG M, CAIN R. Synergy-DRS International Conference. 2020.
[9] RAHWAN I, CEBRIAN M, OBRADOVICH N, et al. Machine behaviour[J]. Nature, 2019, 568(7753): 477-486.
[10] KABER D B. A conceptual framework of autonomous and automated agents[J]. Theoretical issues in ergonomics science, 2018, 19(4): 406-430.
[11] XU Wei. From automation to autonomy and autonomous vehicles: challenges and opportunities for human-computer interaction[J]. Interactions, 2021, 28(1): 48-53.
[12] BRILL J C, CUMMINGS M L, EVANS III A W, et al. Navigating the advent of human-machine teaming[J]. Proceedings of the human factors and ergonomics society annual meeting, 2018, 62(1): 455-459.
[13] JOHNSON M, VERA A. No AI is an island: the case for teaming intelligence[J]. AI magazine, 2019, 40(1): 16-28.
[14] PRADA R, PAIVA A. Human-agent interaction: challenges for bringing humans and agents together[C]//3rd International Workshop on Human-Agent Interaction Design and Models Held at AAMAS’2014-13th International Conference on Autonomous Agents and Multi-Agent Systems. Paris, France, 2014: 1-10.
[15] CUMMINGS M L, CLARE A S. Holistic modelling for human-autonomous system interaction[J]. Theoretical issues in ergonomics science, 2015, 16(3): 214-231.
[16] AMERSHI S, WELD D, VORVOREANU M, et al. Guidelines for human-AI interaction[M]. Glasgow: ACM, 2019.
[17] LI F F. How to make A. I. That’s good for people[N]. The New York times, 2018.
[18] 许为. 四论以用户为中心的设计: 以人为中心的人工智能[J]. 应用心理学, 2019, 25(4): 291-305
XU Wei. User-centered design (IV): human-centered artificial intelligence[J]. Chinese journal of applied psychology, 2019, 25(4): 291-305
[19] SHNEIDERMAN B. Human-centered artificial intelligence: reliable, safe & trustworthy[J]. International journal of human-computer interaction, 2020, 36(6): 495-504.
[20] 许为, 葛列众. 智能时代的工程心理学[J]. 心理科学进展, 2020, 28(9): 1409-1425
XU Wei, GE Liezhong. Engineering psychology in the era of artificial intelligence[J]. Advances in psychological science, 2020, 28(9): 1409-1425
[21] 许为. 人-计算机交互作用研究和应用新思路的探讨[J]. 人类工效学, 2005, 11(4): 37-40
XU Wei. Recent trend of research and applications on human-computer interaction[J]. Chinese journal of ergonomics, 2005, 11(4): 37-40
[22] AMERSHI S, CAKMAK M, KNOX W B, et al. Power to the people: the role of humans in interactive machine learning[J]. AI magazine, 2014, 35(4): 105-120.
[23] HASSANI H, SILVA E S, UNGER S, et al. Artificial intelligence (AI) or intelligence augmentation (IA): what is the future?[J]. AI, 2020, 1(2): 143-155.
[24] 胡源达, 孙效华, 张何辛, 等. 支持人在环路混合智能的交互设计研究[J]. 包装工程, 2020, 41(18): 38-47
HU Yuanda, SUN Xiaohua, ZHANG Hexin, et al. Interaction design in human-in-the-loop hybrid intelligence[J]. Packaging engineering, 2020, 41(18): 38-47
[25] 郑庆华. 人机混合增强智能的典型应用专题前言[J]. 计算机研究与发展, 2020, 57(12): 2479-2480
ZHENG Qinghua. Preface to the applications of human-machine hybrid enhanced intelligence[J]. Journal of computer research and development, 2020, 57(12): 2479-2480
[26] O’NEILL T A, MCNEESE N J, BARRON A, et al. Human-autonomy teaming: a review and analysis of the empirical literature[J]. Human factors: the journal of the human factors and ergonomics society, 2020. DOI:10.1177/0018720820960865.
[27] DEMIR M, COOKE N J, AMAZEEN P G. A conceptual model of team dynamical behaviors and performance in human-autonomy teaming[J]. Cognitive systems research, 2018, 52: 497-507.
[28] BINDEWALD J M, RUSNOCK C F, MILLER M E. (2017). Measuring human trust behavior in human-machine teams[C]//Proceedings of the AHFE 2017 International Conference on Human Factors in Simulation and Modeling. Los Angeles, USA, 2017.
[29] BANSAL G, NUSHI B, KAMAR E, et al. Beyond accuracy: the role of mental models in human-AI team performance[C]//Proceedings of the Seventh AAAI Conference on Human Computation and Crowdsourcing. 2019: 2-11.
[30] OZKAYA I. The behavioral science of software engineering and human-machine teaming[J]. IEEE software, 2020, 37(6): 3-6.
[31] HARING K S, MOSLEY A, PRUZNICK S, et al. Robot authority in human-machine teams: effects of human-like appearance on compliance[C]//11th International Conference on Virtual, Augmented and Mixed Reality. Applications and Case Studies. Orlando, USA, 2019: 63-78.
[32] PETERS N. Interruption timing prediction via prosodic task boundary model for human-machine Teaming[C]//Proceedings of the 2019 Future Information and Communication Conference. San Francisco, USA, 2019: 501-522.
[33] EHSAN U, TAMBWEKAR P, CHAN L, et al. Automated rationale generation: a technique for explainable AI and its effects on human perceptions[C]//Proceedings of the 24th International Conference on Intelligent User Interfaces. Marina del Ray, USA, 2019: 263-274.
[34] WINTERSBERGER P, NICKLAS H, MARTLBAUER T, et al. Explainable automation: personalized and adaptive UIs to foster trust and understanding of driving automation systems[C]//12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Virtual Event, USA, 2020: 252-261.
[35] INTEL NEWS. Mobileye and UDELV ink deal for autonomous delivery[EB/OL]. (2021-04-12) [2021-07-01] https://www.intel.com/content/www/us/en/newsroom/news/mobileye-udelv-deal-autonomous-delivery.html#gs.15ib8a
[36] ISO (International Organization for Standardization). ISO/TR 9241-810: 2020, Ergonomics of human-system interaction-part 810: robotic, intelligent and autonomous systems[S]. BSI Standards Publication, 2020.
[37] GOOGLE PAIR. People + AI Guidebook: Designing human-centeredAI products [EB/OL]. 2019, [2020-01-01] https://pair.withgoogle.com/2019.
[38] CEREJO J. Design process of human-centered AI — Part2 [EB/OL].2021, [2021-06-01] https://bootcamp.uxdesign.cc/human-centered-ai-design-process-part-2-empathize-hypothesis-6065db967716.
[39] HOLMQUIST L E. Intelligence on tap: artificial intelligence as a new design material[J]. Interactions, 2017, 24(4): 29-33.
[40] DE SIO F S, VAN DEN HOVEN J. Meaningful human control over autonomous systems: a philosophical account[J]. Frontiers in robotics and AI, 2018, 5: 15.
[41] ENGELBART D C. Augmenting human intellect: a conceptual framework. SRI summary report AFOSR-3223[R]. Washington: Air Force Office of Scientific Research, 1962.
[42] RAISAMO R, RAKKOLAINEN I, MAJARANTA P, et al. Human augmentation: past, present and future[J]. International journal of human-computer studies, 2019, 131: 131-143.
[43] STANNEY K M, SCHMORROW D D, JOHNSTON M, et al. Augmented cognition: an overview[J]. Reviews of human factors and ergonomics, 2009, 5(1): 195-224.
[44] WU Zhaohui, ZHENG Nenggan, ZHANG Shaowu, et al. Maze learning by a hybrid brain-computer system[J]. Scientific reports, 2016, 6(1): 31746.
[45] 王党校, 郑一磊, 李腾, 等. 面向人类智能增强的多模态人机交互[J]. 中国科学: 信息科学, 2018, 48(4): 449-465
WANG Dangxiao, ZHENG Yilei, LI Teng, et al. Multi-modal human-machine interaction for human intelligence augmentation[J]. Science in China informationis, 2018, 48(4): 449-465
[46] LICKLIDER J C R. Man-computer symbiosis[J]. IRE transactions on human factors in electronics, 1960, HFE-1(1): 4-11.
[47] 吴朝晖, 俞一鹏, 潘纲, 等. 脑机融合系统综述[J]. 生命科学, 2014, 26(6): 645-649
WU Zhaohui, YU Yipeng, PAN Gang, et al. A review of brain- computer fusion systems[J]. Chinese bulletin of life sciences, 2014, 26(6): 645-649
[48] WU Z, ZHENG N, ZHANG S, et al. Maze learning by a hybrid brain-computer system[J]. Scientific reports, 2016, 6: 1-12.
[49] ZANZOTTO F M. Viewpoint: human-in-the-loop Artificial Intelligence[J]. Journal of artificial intelligence research, 2019, 64: 243-252.
[50] PAN Yunhe. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409-413.
[51] SALVI C, BRICOLO E, KOUNIOS J, et al. Insight solutions are correct more often than analytic solutions[J]. Thinking & reasoning, 2016, 22(4): 443-460.
[52] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3
ZHENG Nanning. The new era of AI[J]. Chinese journal of intelligent science and technology, 2019, 1(1): 1-3
[53] 赵云波. 人机混合的智能控制[M]//王飞跃, 陈俊龙. 智能控制. 北京: 中国科学技术出版社, 2019.
[54] SUN R. Potential of full human-machine symbiosis through truly intelligent cognitive systems[J]. AI & society, 2020, 35(1): 17-28.
[55] KITCHIN J, BABER C. A comparison of shared and distributed situation awareness in teams through the use of agent-based modelling[J]. Theoretical issues in ergonomics science, 2016, 17(1): 8-41.
[56] STANTON N A, SALMON P M, WALKER G H, et al. State-of-science: situation awareness in individuals, teams and systems[J]. Ergonomics, 2017, 60(4): 449-466.
[57] 刘烨, 汪亚珉, 卞玉龙, 等. 面向智能时代的人机合作心理模型[J]. 中国科学: 信息科学, 2018, 48(4): 376-389
LIU Ye, WANG Yamin, BIAN Yulong, et al. A psychological model of human-computer cooperation for the era of artificial intelligence[J]. Science in China informationis, 2018, 48(4): 376-389
[58] FRIDMAN L. Human-centered autonomous vehicle systems: principles of effective shared autonomy [EB/OL]. (2018-10-01) [2021-06-01] https://arxiv.org/pdf/1810.01835.pdf.
[59] 范俊君, 田丰, 杜一, 等. 智能时代人机交互的一些思考[J]. 中国科学: 信息科学, 2018, 48(4): 361-375
FAN Junjun, TIAN Feng, DU Yi, et al. Thoughts on human-computer interaction in the age of artificial intelligence[J]. Science in China informationis, 2018, 48(4): 361-375
[60] KRAFFT P M, MACY M, PENTLAND A. Bots as virtual confederates: design and ethics[C]//Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, USA, 2017: 183-190.
[61] CRANDALL J W, OUDAH M, TENNOM, et al. Cooperating with machines[J]. Nature communications, 2018, 9(1): 233.
[62] GUNNING D, STEFIK M, CHOI J, et al. XAI—explainable artificial intelligence[J]. Science robotics, 2019, 4(37): eaay7120.
[63] BOND R R, MULVENNA M, WAN H, et al. Human centered artificial intelligence: weaving UX into algorithmic decision making[C]//International Conference on Human-Computer Interaction. Bucharest, Romania, 2019: 2-9.
[64] MILLER T, HOWE P, SONENBERG L. Explainable AI: beware of inmates running the asylum. [EB/OL]. (2017-12-01) [2021-06-01] https://arxiv.org/pdf/1712.00547.pdf.
[65] EHSAN U, WINTERSBERGER P, LIAO Q V, et al. Operationalizing human-centered perspectives in explainable AI[C]//Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. New York, USA, 2021: 1-6.
[66] KALUARACHCHI T, REIS A, NANAYAKKARA S. A review of recent deep learning approaches in human-centered machine learning[J]. Sensors, 2021, 21(7): 2514.
[67] ABDUL A, VERMEULEN J, WANG D D, et al. Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal, Canada, 2018: 582.
[68] BRONIATOWSKI D A. Psychological foundations of explainability and interpretability in AI[R]. Gaithersburg: National Institute of Standards and Technology, 2021.
[69] HOFFMAN R R, KLEIN G, MUELLER S T. Explaining explanation for “explainable AI”[J]. Proceedings of the human factors and ergonomics society annual meeting, 2018, 62(1): 197-201.
[70] ENDSLEY M R. From here to autonomy: lessons learned from human-automation research[J]. Human factors: the journal of the human factors and ergonomics society, 2017, 59(1): 5-27.
[71] SARTER N B, WOODS D D. How in the world did we ever get into that mode? Mode error and awareness in supervisory control[J]. Human factors: the journal of the human factors and ergonomics society, 1995, 37(1): 5-19.
[72] 许为. 自动化飞机驾驶舱中人-自动化系统交互作用的心理学研究[J]. 心理科学, 2003, 26(3): 523-524
XU Wei. Psychological studies of human-automation interactions in automated cockpits[J]. Psychological science, 2003, 26(3): 523-524
[73] BAINBRIDGE L. Ironies of automation[J]. Automatica, 1983, 19(6): 775-779.
[74] XU Wei. Status and challenges: human factors in developing modern civil flight decks[J]. Chinese journal of ergonomics, 2004, 10(4): 53-56.
[75] DE VISSER E J, PAK R, SHAW T H. From ‘automation’ to ‘autonomy’: the importance of trust repair in human-machine interaction[J]. Ergonomics, 2018, 61(10): 1409-1427.
[76] CUMMINGS M L, BRITTON D. Regulating safety-critical autonomous systems: past, present, and future perspectives[M]//PAK R, DE VISSER E J, ROVIRA E. Living with Robots. Amsterdam: Elsevier, 2020: 119-140.
[77] SAE (Society of Automotive Engineers). J3016_201806, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[S]. SAE, 2018.
[78] HANCOCK P A. Some pitfalls in the promises of automated and autonomous vehicles[J]. Ergonomics, 2019, 62(4): 479-495.
[79] BIONDI F, ALVAREZ I, JEONG K A. Human-system cooperation in automated driving[J]. International journal of human-computer interaction, 2019, 35(11): 917-918.
[80] 许为. 再论以用户为中心的设计: 新挑战和新机遇[J]. 人类工效学, 2017, 23(1): 82-86
XU Wei. User-centered design (II): new challenges and opportunities[J]. Chinese journal of ergonomics, 2017, 23(1): 82-86
[81] 百度. AI-人机交互趋势研究[R]. 百度人工智能交互设计院 (AIID), 2019.
Baidu. AI-Human-Computer Interaction Trend Research[R]. Baidu Artificial Intelligence Interaction Design Institute (AIID), 2019.
[82] 范向民, 范俊君, 田丰, 等. 人机交互与人工智能: 从交替浮沉到协同共进[J]. 中国科学: 信息科学, 2019, 49(3): 361-368
FAN Xiangmin, FAN Junjun, TIAN Feng, et al. Human-computer interaction and artificial intelligence: from competition to integration[J]. Science in China informationis, 2019, 49(3): 361-368
[83] 葛列众, 许为. 用户体验: 理论和实践[M]. 北京: 中 国人民大学出版社, 2020.
[84] DONAHOE E. Human centered AI: building trust, democracy and human rights by design[C]//An Overview of Stanford’s Global Digital Policy Incubator and the XPRIZE Foundation’s June 11th Event. Palo Alto, USA, 2018.
[85] MITTELSTADT B. AI ethics-too principled to fail? [EB/OL]. (2019-01-01) [2021-06-01] https://robotic.legal/wp-content/uploads/2019/05/SSRN-id3391293.pdf.
[86] BUOLAMWINI J, GEBRU T, GENDER SHADES. Intersectional accuracy disparities in commercial gender classification[C]//Proceedings of the 1st Conference on Fairness, Accountability and Transparency. New York, USA, 2018: 77-91.
[87] YANG Qian. Machine learning as a UX design material: how can we imagine beyond automation, recommenders, and reminders[C]//Conference on 2018 AAAI Spring Symposium Series: User Experience of Artificial Intelligence. Palo Alto, USA, 2018.
[88] YANG Q. STEINFELD A. ROSE C. ZIMMERMAN J. Re-examining whether, why, and how human-AI interaction is uniquely difficult to design[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York, USA, 2020: 1-13.
[89] BUDIU R, LAUBHEIMER P. Intelligent assistants have poor usability: a user study of Alexa, google assistant, and Siri[R]. Nielsen Norman Group, 2018.
[90] GIRARDIN F, LATHIA N. When user experience designers partner with data scientists[R]. Palo Alto: AAAI, 2017.
[91] 许为, 葛列众. 人因学发展的新取向[J]. 心理科学进展, 2018, 26(9): 1521-1534
XU Wei, GE Liezhong. New trends in human factors[J]. Advances in psychological science, 2018, 26(9): 1521-1534

相似文献/References:

[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(01):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4(4):1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(06):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3(4):476.
[3]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(01):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1(4):9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(01):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1(4):38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(02):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1(4):16.
[6]秦裕林,朱新民,朱 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(02):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1(4):11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(01):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2(4):1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(03):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(4):8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(05):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2(4):20.
[10]王志良,杨 溢,杨 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(06):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4(4):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

备注/Memo:
收稿日期:2020-12-28。
作者简介:许为,留美心理学博士和计算机科学硕士,教授;国际知名IT企业资深研究员、人机交互技术委员会主席。任国际标准化组织(ISO)人?系统交互专业委员会成员、中国认知工效学分会和工程心理学分会理事,主要研究方向为人机交互和人因工程。主持或参与国家、省部级、国际合作项目10余项,成果应用在国内外多种飞机型号和IT产品。主持或参与开发国内外人因工程、人机交互设计标准20余部,出版中英文专著4部,发表学术论文40余篇;葛列众,教授,博士,中国心理学会工程心理学专业委员会主任委员,主要研究方向为人机交互、面孔认知、用户可用性和用户体验。主持国家及省部级项目8项、华为等公司横向课题30余项、国际合作项目4项。2019年获得中国心理学会“学科建设成就奖”,2019年领衔团队获得中央军委装备发展部等5部委颁发的“中国航天载人工程突出成就集体奖”。发表学术论文174篇;高在峰,教授,博士生导师,长江学者青年学者,中国认知工效学会理事,主要研究方向为认知心理学、工程心理学。主持国家及省部级项目9项,发表学术论文40余篇
通讯作者:许为.E-mail:xuwei11@zju.edu.cn
更新日期/Last Update: 1900-01-01