[1]王鑫,郭鑫垚,魏巍,等.对抗样本三元组约束的度量学习算法[J].智能系统学报,2021,16(1):30-37.[doi:10.11992/tis.202009050]
 WANG Xin,GUO Xinyao,WEI Wei,et al.Metric learning algorithm with adversarial sample triples constraints[J].CAAI Transactions on Intelligent Systems,2021,16(1):30-37.[doi:10.11992/tis.202009050]
点击复制

对抗样本三元组约束的度量学习算法

参考文献/References:
[1] QIAN Qi, JIN Rong, ZHU Shenghuo, et al. Fine-grained visual categorization via multi-stage metric learning[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA, 2015:3716-3724.
[2] GAO Yue, WANG Meng, JI Rongrong, et al. 3-D object retrieval with hausdorff distance learning[J]. IEEE transactions on industrial electronics, 2014, 61(4):2088-2098.
[3] HOI S C H, LIU W, CHANG S F. Semi-supervised distance metric learning for collaborative image retrieval[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA, 2008:1-7.
[4] HOI S C H, LIU W, LYU M R, et al. Learning distance metrics with contextual constraints for image retrieval[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). New York, NY, USA, 2006:2072-2078.
[5] DONG Yanni, DU Bo, ZHANG Liangpei, et al. Hyperspectral target detection via adaptive information-theoretic metric learning with local constraints[J]. Remote sensing, 2018, 10(9):1415.
[6] DONG Yanni, DU Bo, ZHANG Liangpei. Target detection based on random forest metric learning[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2015, 8(4):1830-1838.
[7] DONG Yanni, DU Bo, ZHANG Lefei, et al. Local decision maximum margin metric learning for hyperspectral target detection[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy, 2015:397-400.
[8] HU Junlin, LU Jiwen, YUAN Junsong, et al. Large margin multi-metric learning for face and kinship verification in the wild[C]//12th Asian Conference on Computer Vision. Singapore, Singapore, 2015:252-267.
[9] LU Rui, WU Kailun, DUAN Zhiyao, et al. Deep ranking:triplet MatchNet for music metric learning[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, USA, 2017:121-125.
[10] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with side-information[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA, 2002:521-528.
[11] YING Yiming, LI Peng. Distance metric learning with eigenvalue optimization[J]. The journal of machine learning research, 2012, 13(1):1-26.
[12] DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA, 2007:209-216.
[13] ZADEH P H, HOSSEINI R, SRA S. Geometric mean metric learning[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, NY, USA, 2016:2464-2471.
[14] OMARA I, ZHANG Hongzhi, WANG Faqiang, et al. Metric learning with dynamically generated pairwise constraints for ear recognition[J]. Information, 2018, 9(9):215.
[15] WEINBERGER K Q, BLITZER J, SAUL L. K. Distance metric learning for large margin nearest neighbor classification[M]. WEISS Y, SCH?LKOPF B, PLATT J. Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2006:1473-1480.
[16] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. The journal of machine learning research, 2009, 10:207-244.
[17] 杨柳, 于剑, 景丽萍. 一种自适应的大间隔近邻分类算法[J]. 计算机研究与发展, 2013, 50(11):2269-2277
YANG Liu, YU Jian, JING Liping. An adaptive large interval nearest neighbor classification algorithm[J]. Journal of computer research and development, 2013, 50(11):2269-2277
[18] SONG Kun, NIE Feiping, HAN Junwei, et al. Parameter free large margin nearest neighbor for distance metric learning[C]//The 31st AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017:2555-2561.
[19] LIU Meizhu, VEMURI B C. A robust and efficient doubly regularized metric learning approach[C]//12th European Conference on Computer Vision. Florence, Italy, 2012:646-659.
[20] LE CAPITAINE H. Constraint selection in metric learning[J]. Knowledge-based systems, 2018, 146(15):91-103.
[21] PERROT M, HABRARD A. Regressive virtual metric learning[C]//Advances in Neural Information Processing Systems. Montréal, Canada, 2015:1810-1818.
[22] WANG Faqiang, ZUO Wangmeng, ZHANG Lei, et al. A kernel classification framework for metric learning[J]. IEEE transactions on neural networks and learning systems, 2015, 26(9):1950-1962.
[23] ZUO Wangmeng, WANG Faqiang, ZHANG D, et al. Distance metric learning via iterated support vector machines[J]. IEEE transactions on image processing, 2017, 26(10):4937-4950.
[24] MEI Jiangyuan, LIU Meizhu, KARIMI H R, et al. LogDet divergence-based metric learning with triplet constraints and its applications[J]. IEEE transactions on image processing, 2014, 23(11):4920-4931.
[25] CHEN Shuo, GONG Chen, YANG Jian, et al. Adversarial metric learning[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018:2021-2027.
相似文献/References:
[1]叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148.
 YE Zhi-fei,WEN Yi-min,LU Bao-liang.A survey of imbalanced pattern classification problems[J].CAAI Transactions on Intelligent Systems,2009,4(1):148.
[2]刘奕群,张 敏,马少平.基于非内容信息的网络关键资源有效定位[J].智能系统学报,2007,2(1):45.
 LIU Yi-qun,ZHANG Min,MA Shao-ping.Web key resource page selection based on non-content inf o rmation[J].CAAI Transactions on Intelligent Systems,2007,2(1):45.
[3]马世龙,眭跃飞,许 可.优先归纳逻辑程序的极限行为[J].智能系统学报,2007,2(4):9.
 MA Shi-long,SUI Yue-fei,XU Ke.Limit behavior of prioritized inductive logic programs[J].CAAI Transactions on Intelligent Systems,2007,2(1):9.
[4]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(5):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6(1):396.
[5]文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(2):95.[doi:10.3969/j.issn.1673-4785.201208012]
 WEN Yimin,QIANG Baohua,FAN Zhigang.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8(1):95.[doi:10.3969/j.issn.1673-4785.201208012]
[6]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(1):183.[doi:10.3969/j.issn.1673-4785.201209056]
[7]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(3):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8(1):261.
[8]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
[9]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(3):349.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10(1):349.[doi:10.3969/j.issn.1673-4785.201403019]
[10]姚霖,刘轶,李鑫鑫,等.词边界字向量的中文命名实体识别[J].智能系统学报,2016,11(1):37.[doi:10.11992/tis.201507065]
 YAO Lin,LIU Yi,LI Xinxin,et al.Chinese named entity recognition via word boundarybased character embedding[J].CAAI Transactions on Intelligent Systems,2016,11(1):37.[doi:10.11992/tis.201507065]

备注/Memo

收稿日期:2020-09-30。
基金项目:国家自然科学基金项目(62006147,61876103,61772323);山西省重点研发计划项目(201903D121162);山西省1331工程项目
作者简介:王鑫,硕士研究生,主要研究方向为度量学习;郭鑫垚,博士研究生,主要研究方向为度量学习;魏巍,教授,博士生导师,中国人工智能学会知识工程与分布智能专委会常委,主要研究方向为数据挖掘、机器学习、粒计算。主持和参与国家自然科学基金项目、山西省自然科学基金项目10余项。发表学术论文20余篇
通讯作者:魏巍. E-mail:weiwei@sxu.edu.cn

更新日期/Last Update: 2021-02-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134