[1]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(03):349-353.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10(03):349-353.[doi:10.3969/j.issn.1673-4785.201403019]
点击复制

社交网站中用户评论行为预测(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年03期
页码:
349-353
栏目:
出版日期:
2015-06-25

文章信息/Info

Title:
User comment behavior prediction in social networking sites
作者:
孔庆超 毛文吉 张育浩
中国科学院自动化研究所 复杂系统管理与控制国家重点实验室, 北京 100190
Author(s):
KONG Qingchao MAO Wenji ZHANG Yuhao
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Science, Beijing 100190, China
关键词:
社交网络用户评论机器学习行为建模行为预测不平衡性数据集
Keywords:
social networkuser commentsmachine learningbehavior modelingbehavior predictionimbalance dataset
分类号:
TP391
DOI:
10.3969/j.issn.1673-4785.201403019
文献标志码:
A
摘要:
社交网站为用户相互交流、发表意见和观点提供了非常便利的平台.对社交网站的用户行为进行建模和预测对于安全、商业等多个领域具有十分重要的社会意义和应用价值,近年来逐渐得到研究者的重视.面向社交网站中用户评论行为,预测用户是否会参与讨论.采用基于特征的机器学习方法,其中特征包括讨论帖子及其内容、用户行为特征和社交关系,并引入参数控制数据集的不平衡性.实验采用来自豆瓣小组的真实数据.实验结果表明,新提出的用户行为和社交关系特征以及对不平衡数据集的处理方法能够有效提高用户评论行为的预测效果,进一步说明用户的历史行为和所在的社交关系网络对当前的评论行为有较大影响.
Abstract:
Social networking sites provide a convenient way for users to communicate with others and to present opinions. Related researches on modeling and predicting user behaviors in social networking sites are of vital importance for many applications in the domains of security and business. The aim of this paper is to predict user comment behavior based on postings in social networking sites. A feature-based machine learning approach is employed, which includes features from the postings, content, user behaviors and social relations, and introduces a parameter to control the imbalanceness of the dataset. Real-world datasets from Douban Group were used in the experiments. The experimental results showed that the user behavior and social relation features and the imbalance processing technique effectively improved the prediction performance of user comment behaviors. This further demonstrates that the user comment behavior is largely affected by their behavior history and social network.

参考文献/References:

[1] TSAGKIAS M, WEERKAMP W, De RIJKE M. Predicting the volume of comments on online news stories[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA, 2009: 1765-1768.
[2] YANO T, SMITH N A. What’s worthy of comment? Content and comment volume in political blogs[C]//Proceedings of the Fourth International Conference on Weblogs and Social Media. Washington, DC, USA, 2010: 359-362.
[3] ZAMAN T, FOX E B, BRADLOW E T. A bayesian approach for predicting the popularity of tweets[J]. The Annals of Applied Statistics, 2014, 8(3): 1583-1611.
[4] HONG L, DAN O, Davison B D. Predicting popular messages in Twitter[C]//Proceedings of the 20th International Conference Companion on World Wide Web. New York, USA, 2011: 57-58.
[5] MA Haixin, QIAN Weining, XIA Fan, et al. Towards modeling popularity of microblogs[J]. Frontiers of Computer Science, 2013, 7(2): 171-184.
[6] JENDERS M, KASNECI G, NAUMANN F. Analyzing and predicting viral tweets[C]//Proceedings of the 22nd International Conference on World Wide Web Companion. Geneva, Switzerland, 2013: 657-664.
[7] FIGUEIREDO F. On the prediction of popularity of trends and hits for user generated videos[C]//Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. New York, USA, 2013: 741-746.
[8] PINTO H, ALMEIDA J M, GONCALVES M A. Using early view patterns to predict the popularity of Youtube videos[C]//Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. New York, USA, 2013: 365-374.
[9] KHOSLA A, DAS SARMA A, HAMID R. What makes an image popular?[C]//Proceedings of the 23rd International Conference on World Wide Web. Seoul, Korea, 2014: 1-10.
[10] CHENG J, ADAMIC L, DOW P A, et al. Can cascades be predicted?[C]//Proceedings of the 23rd International Conference on World Wide Web. Seoul, Korea, 2014: 925-936.
[11] YANO T, COHEN W W, SMITH N A. Predicting response to political blog posts with topic models[C]//Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA, 2009: 477-485.
[12] TANG X N, YANG C C, ZHANG M. Who will be participating next? Predicting the participation of dark web community[C]//Proceedings of the ACM SIGKDD Workshop on Intelligence and Security Informatics. New York, USA, 2012: 1-7.
[13] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[14] LIU Xuying, WU Jianxin, ZHOU Zhihua. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 539-550.
[15] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.

相似文献/References:

[1]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报,2015,10(6):949.[doi:10.11992/tis.201507042]
 WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,10(03):949.[doi:10.11992/tis.201507042]
[2]石磊,杜军平,周亦鹏,等.在线社交网络挖掘与搜索技术研究[J].智能系统学报,2016,11(6):777.[doi:10.11992/tis.201612007]
 SHI Lei,DU Junping,ZHOU Yipeng,et al.A survey on online social network mining and search[J].CAAI Transactions on Intelligent Systems,2016,11(03):777.[doi:10.11992/tis.201612007]

备注/Memo

备注/Memo:
收稿日期:2014-3-5;改回日期:。
基金项目:国家自然科学基金资助项目(61175040, U1435221).
作者简介:孔庆超,男,1987年生,博士研究生,主要研究方向为社会媒体信息分析与处理、数据挖掘. 毛文吉,女,1968年生,研究员,博士生导师,主要研究方向为智能信息处理、人工智能、社会计算.曾获国家科技进步二等奖,“吴文俊人工智能科学技术奖”创新二等奖,“中国自动化学会科学技术进步奖”一等奖,发表学术论文40余篇.张育浩,男,1989年生,博士研究生,主要研究方向为社会建模与计算.
通讯作者:毛文吉. E-mail: wenji.mao@ia.ac.cn.
更新日期/Last Update: 2015-07-15