[1]姜通维,姜勇.基于虚拟力引导的人机协同目标抓取方法[J].智能系统学报,2021,16(4):683-689.[doi:10.11992/tis.202007046]
 JIANG Tongwei,JIANG Yong.Human-machine cooperative object grasping method based on virtual force guidance[J].CAAI Transactions on Intelligent Systems,2021,16(4):683-689.[doi:10.11992/tis.202007046]
点击复制

基于虚拟力引导的人机协同目标抓取方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年4期
页码:
683-689
栏目:
学术论文—机器感知与模式识别
出版日期:
2021-07-05

文章信息/Info

Title:
Human-machine cooperative object grasping method based on virtual force guidance
作者:
姜通维1234 姜勇234
1. 沈阳建筑大学 信息与控制工程学院,辽宁 沈阳 110168;
2. 中国科学院 网络化控制系统重点实验室,辽宁 沈阳 110016;
3. 中国科学院 沈阳自动化研究所,辽宁 沈阳 110016;
4. 中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169
Author(s):
JIANG Tongwei1234 JIANG Yong234
1. School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
2. Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China;
3. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
4. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
关键词:
虚拟力引导力反馈运动约束机械臂避障目标抓取主从控制遥操作人机协同
Keywords:
virtual force guidanceforce feedbackmotion constraintsobstacle avoidanceobject graspingmaster-slave controlteleoperationhuman-machine collaboration
分类号:
TP242.2
DOI:
10.11992/tis.202007046
摘要:
针对力反馈遥操作中传统人工势场法无法适应于机械臂整体的避障以及在作业过程中操作者难以控制机械臂到达所需位姿的问题,提出了一种基于虚拟力引导的人机协同目标抓取方法。力反馈设备向操作者提供力觉交互。通过结合人工势场法和虚拟夹具,构建管道形虚拟力场,生成实时虚拟力引导,实现协助操作者完成从端机器人的整体避障任务并在完成避障后引导机器人返回预定义路径并趋近目标点。当进行抓取任务时,构建锥形虚拟力场,实现协助操作者操作机械臂到达目标位置和姿态。此外,提出了一种机器人运动限制方法以降低操作者的操作失误对抓取任务的影响。实验证明,该方法能有效提高目标抓取操作的成功率和操作效率。
Abstract:
The traditional artificial potential field method in force feedback teleoperation cannot adapt to the overall obstacle avoidance of manipulators, and operators find it difficult to control manipulators to reach the required pose in the operation process. Accordingly, this paper proposes a human-machine cooperative object grasping method based on virtual force guidance. Force feedback devices provide operators with haptic interaction. By combining the artificial potential field method and virtual fixture and by constructing a pipe-like virtual force field, the real-time virtual force guidance is generated, which can assist operators in completing the overall obstacle avoidance tasks of slave robots and guide robots to return to the predefined path and approach the target point after completing their tasks. When a grasping task is performed, a virtual cone-shaped force field is constructed to help operators make manipulators reach the target position and pose. In addition, a method of limiting robot motion is proposed to reduce the impact of operators’ errors on their grasping tasks. Experimental results show that this method can effectively improve the success rate and efficiency of object grasping operation.

参考文献/References:

[1] 刘金存. 带电作业机器人主从控制的研究[D]. 济南: 山东建筑大学, 2014.
LIU Jincun. Master-slave control research of live working robot[D]. Ji’nan: Shandong Jianzhu University, 2014.
[2] DRAGAN A D, SRINIVASA S S. A policy-blending formalism for shared control[J]. The international journal of robotics research, 2013, 32(7): 790-805.
[3] JAVDANI S, ADMONI H, PELLEGRINELLI S, et al. Shared Autonomy via hindsight optimization for teleoperation and teaming[J]. The international journal of robotics research, 2018, 37(7): 717-742.
[4] ROSENBERG L B. Virtual fixtures: perceptual tools for telerobotic manipulation[C]//Proceedings of 1993 IEEE Virtual Reality Annual International Symposium. Seattle, WA, USA, 1993: 76-82.
[5] BU Wanghui, LIU Guangjun, LIU Chengju. Online generation of virtual fixture for bilateral teleoperation based on intention recognition[C]//Proceedings of 2016 International Conference on Advanced Robotics and Mechatronics (ICARM). Macau, China, 2016: 122-126.
[6] LEE K H, PRUKS V, RYU J H. Development of shared autonomy and virtual guidance generation system for human interactive teleoperation[C]//Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, Korea (South), 2017: 457-461.
[7] ROZENBLIT J W, FENG C, RIOJAS M, et al. The computer assisted surgical trainer: design, models, and implementation[C]//Proceedings of 2014 Summer Simulation Multiconference. Monterey, USA, 2014: 211-220.
[8] BALACHANDRAN R, KOZLOVA N, OTT C, et al. Non-linear local force feedback control for haptic interfaces[J]. IFAC-PapersOnLine, 2018, 51(22): 486-492.
[9] NIKOLAIDIS S, ZHU Yuxiang, HSU D, et al. Human-robot mutual adaptation in shared autonomy[C]//Proceedings of the 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Vienna, Austria, 2017: 294-302.
[10] WANG Xinyu, YANG Chenguang, MA Hongbin, et al. Shared control for teleoperation enhanced by autonomous obstacle avoidance of robot manipulator[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, 2015: 4575-4580.
[11] HONG M, ROZENBLIT J W. A haptic guidance system for Computer-Assisted Surgical Training using virtual fixtures[C]//Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest, Hungary, 2016: 2230-2235.
[12] LIU Manlu, LING Qiang, ZHANG Jing, et al, Bilateral control of teleoperation manipulator based on virtual force aware guidance[C]//Proceedings of 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). Ningbo, China, 2017: 231-236.
[13] BOWYER S A, DAVIES B L, BAENA F R. Active constraints/virtual fixtures: a survey[J]. IEEE transactions on robotics, 2014, 30(1): 138-157.
[14] WANG Wenrui, ZHU Mingchao, WANG Xiaoming, et al. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators[J]. The international journal of advanced robotic systems, 2018, 15(5).
[15] BETTINI A, MARAYONG P, LANG S, et al. Vision-assisted control for manipulation using virtual fixtures[J]. IEEE transactions on robotics, 2004, 20(6): 953-966.
[16] MARAYONG P, BETTINI A, OKAMURA A. Effect of virtual fixture compliance on human-machine cooperative manipulation[C]//Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 1089-1095.
[17] KIM D J, HAZLETT-KNUDSEN R, CULVER-GODFREY H, et al. How autonomy impacts performance and satisfaction: results from a study with spinal cord injured subjects using an assistive robot[J]. IEEE transactions on systems, man, and cybernetics - part A: systems and humans, 2012, 42(1): 2-14.
[18] YOU E, HAUSER K. Assisted teleoperation strategies for aggressively controlling a robot arm with 2D input[M]//DURRANT-WHYTE H, ROY N, ABBEEL P. Robotics: Science and Systems VII. Los Angeles: MIT Press, 2012: 354-361.

备注/Memo

备注/Memo:
收稿日期:2020-07-29。
基金项目:国家自然科学基金项目(52075531)
作者简介:姜通维,硕士研究生,主要研究方向为人机协作;姜勇,研究员,主要研究方向为机器人控制、智能控制理论与方法、嵌入式控制系统、特种机器人系统与应用。负责及参加完成了国家863重点项目、国家自然科学基金青年及面上项目、中科院知识创新工程重大项目、辽宁省自然科学基金项目、机器人学重点实验室项目、国网及南网重点项目等20余项。申请国家发明专利3项、实用新型专利4项,登记软件著作权2项。参加编写专著2部,发表学术论文20余篇
通讯作者:姜勇.E-mail:jiangyong@sia.cn
更新日期/Last Update: 1900-01-01