[1]陈立伟,房赫,朱海峰.多视图主动学习的多样性样本选择方法研究[J].智能系统学报,2021,16(6):1007-1014.[doi:10.11992/tis.202007037]
 CHEN Liwei,FANG He,ZHU Haifeng.Diversity sample selection method of multiview active learning classification[J].CAAI Transactions on Intelligent Systems,2021,16(6):1007-1014.[doi:10.11992/tis.202007037]
点击复制

多视图主动学习的多样性样本选择方法研究

参考文献/References:
[1] LU Xiaohui, XIA Zhengyan, QU Fangfang, et al. Identification of authenticity, quality and origin of saffron using hyperspectral imaging and multivariate spectral analysis[J]. Spectroscopy letters, 2020, 53(2): 76-85.
[2] 张晓玲, 张培强, 沈兰荪. 基于信息量失真测度的VQ及在高光谱图像无损压缩中的应用[J]. 遥感学报, 2004, 8(5): 414-418
ZHANG Xiaoling, ZHANG Peiqiang, SHEN Lansun. A VQ based on information distortion measure and its application to lossless compression of hyperspectral image[J]. Journal of remote sensing, 2004, 8(5): 414-418
[3] WANG Meng, HUA Xiansheng. Active learning in multimedia annotation and retrieval: a survey[J]. ACM transactions on intelligent systems and technology, 2011, 2(2): 10.
[4] TU Bing, KUANG Wenlan, ZHAO Guangzhe, et al. Hyperspectral image classification by combining local binary pattern and joint sparse representation[J]. International journal of remote sensing, 2019, 40(24): 9484-9500.
[5] YANG Jihai, LI Shijun, XU Wenning. Active learning for visual image classification method based on transfer learning[J]. IEEE access, 2017, 6: 187-198.
[6] LIN Jianzhe, ZHAO Liang, LI Shuying, et al. Active-learning-incorporated deep transfer learning for hyperspectral image classification[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2018, 11(11): 4048-4062.
[7] 赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12): 2098-2110
ZHAO Zhongming, GAO Lianru, CHEN Dong, et al. Development of satellite remote sensing and image processing platform[J]. Journal of image and graphics, 2019, 24(12): 2098-2110
[8] 程圆娥, 周绍光, 袁春琦, 等. 基于主动深度学习的高光谱影像分类[J]. 计算机工程与应用, 2017, 53(17): 192-196, 248
CHENG Yuan’e, ZHOU Shaoguang, YUAN Chunqi, et al. Hyperspectral image classification based on active deep learning[J]. Computer engineering and applications, 2017, 53(17): 192-196, 248
[9] 吴超. 高光谱图像处理若干关键技术研究[D]. 南京: 南京航空航天大学, 2012.
WU Chao. Research on some key technologies of hyperspectral image processing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[10] JAMSHIDPOUR N, SAFARI A, HOMAYOUNI S. Multiview active learning optimization based on genetic algorithm and Gaussian mixture models for hyperspectral data[J]. IEEE geoscience and remote sensing letters, 2020, 17(1): 172-176.
[11] DI Wei, CRAWFORD M M. View generation for multiview maximum disagreement based active learning for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(5): 1942-1954.
[12] DI Wei, CRAWFORD M M. Multi-view adaptive disagreement based active learning for hyperspectral image classification[C]//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, USA, 2010: 1374-1377.
[13] 甘继生. 基于广义组合核的高光谱图像GPU并行分类[D]. 南京: 南京理工大学, 2018.
GAN Jisheng. Hyperspectral Image GPU parallel classification based on generalized composite cores[D]. Nanjing: Nanjing University of Science and Technology, 2012.
[14] HU Jie, HE Zhi, LI Jun, et al. 3D-gabor inspired multiview active learning for spectral-spatial hyperspectral image classification[J]. Remote sensing, 2018, 10(7): 1-24.
[15] XU Xiang, LI Jun, LI Shutao. Multiview intensity-based active learning for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(2): 669-680.
[16] 魏飞鸣, 李小文, 顾行发, 等. 基于形状参数的遥感图像“同谱异物”目标区分[C]//第十四届全国图象图形学学术会议论文集. 福州, 中国, 2008: 477-481.
WEI Feiming, LI Xiaowen, GU Xingfa, et al. Shape-based classification of “Spectral Similar” objects in remote sensing image processing[C]//Proceedings of the 14th National Conference on Image Graphics. Fuzhou, China, 2008: 477-481.
[17] 王立国, 魏芳洁. 结合APO算法的高光谱图像波段选择[J]. 哈尔滨工业大学学报, 2013, 45(9): 100-106
WANG Liguo, WEI Fangjie. Artificial physics optimization algorithm combined band selection for hyperspectral imagery[J]. Journal of Harbin Institute of Technology, 2013, 45(9): 100-106
[18] 王阳. 基于超像素的图像分割算法研究[D]. 兰州: 兰州理工大学, 2018: 1-57.
WANG Yang. Research on image segmentation algorithm based on superpixel[D]. Lanzhou: Lanzhou University of Technology, 2018: 1-57.
[19] LIU Peng, HUANG Jiwei, ZHANG Shiwu, et al. Multiview hyperspectral topography of tissue structural and functional characteristics[J]. Journal of biomedical optics, 2016, 21(1): 1-12.
[20] SUN Shiliang. A survey of multi-view machine learning[J]. Neural computing and applications, 2013, 23(7/8): 2031-2038.
[21] ZHAO Jing, XIE Xijiong, XU Xin, et al. Multi-view learning overview: recent progress and new challenges[J]. Information fusion, 2017, 38: 43-54.
[22] HE Lin, LI Jun, PLAZA A, et al. Discriminative low-rank Gabor filtering for spectral-spatial hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(3): 1381-1395.
[23] 段无悔. 基于超像素的高光谱图像分类算法研究[D]. 长沙: 湖南大学, 2015: 1-64.
DUAN Wuhui. Researches on hyperspectral image classification algorithms based on superpixel[D]. Changsha: Hunan University, 2015: 1-64.
[24] PATRA S, BHARDWAJ K, BRUZZONE L. A spectral-spatial multicriteria active learning technique for hyperspectral image classification[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2017, 10(12): 5213-5227.
[25] BIOUCASDIAS B J, FIGUEIREDO M. Logistic regression via variable splitting and augmented lagrangian tools[R]. Instituto Superior Técnico, TULisbon, 2009.

备注/Memo

收稿日期:2020-07-23。
基金项目:国家自然科学基金项目(61675051)
作者简介:陈立伟,副教授,博士,中国图像图形学会会员,黑龙江省生物医学工程学会会员,主要研究方向为人工智能、深度学习、图像的分割、特征提取、分类识别以及理解。主持省市级科研项目3项,参与国家级项目5项。获授权发明专利5项,发表学术论文40余篇;房赫,硕士研究生,主要研究方向为高光谱图像分类技术;朱海峰,讲师,主要研究方向为人工智能、高光谱图像处理
通讯作者:朱海峰.E-mail:zhuhaifeng@hrbeu.edu.cn

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com