[1]李庆勇,何军,张春晓.基于分类差异与信息熵对抗的无监督域适应算法[J].智能系统学报,2021,16(6):999-1006.[doi:10.11992/tis.202010020]
 LI Qingyong,HE Jun,ZHANG Chunxiao.Unsupervised domain adaptation algorithm based on classification discrepancy and information entropy[J].CAAI Transactions on Intelligent Systems,2021,16(6):999-1006.[doi:10.11992/tis.202010020]
点击复制

基于分类差异与信息熵对抗的无监督域适应算法

参考文献/References:
[1] WANG Xiaolong, GUPTA A. Unsupervised learning of visual representations using videos[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 2794-2802.
[2] MAHJOURIAN R, WICKE M, ANGELOVA A. Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 5667-5675.
[3] 刘建伟, 孙正康, 罗雄麟. 域自适应学习研究进展[J]. 自动化学报, 2014, 40(8): 1576-1600
LIU Jianwei, SUN Zhengkang, LUO Xionglin. Review and research development on domain adaptation learning[J]. Acta automatica sinica, 2014, 40(8): 1576-1600
[4] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[5] ROZANTSEV A, SALZMANN M, FUA P. Beyond sharing weights for deep domain adaptation[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(4): 801-814.
[6] GHIFARY M, KLEIJN W B, ZHANG Mengjie, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 597-613.
[7] SENER O, SONG H O, SAXENA A, et al. Learning transferrable representations for unsupervised domain adaptation[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016: 2110-2118.
[8] SUN Baochen, FENG Jiashi, SAENKO K. Return of frustratingly easy domain adaptation[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, Arizona: AAAI Press, 2016: 2058-2065.
[9] GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The journal of machine learning research, 2012, 13: 723-773.
[10] TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: maximizing for domain invariance[J]. Computer science, 2014.
[11] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR, 2015: 97-105.
[12] LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Unsupervised domain adaptation with residual transfer networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016: 136-144.
[13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014: 2672-2680.
[14] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The journal of machine learning research, 2016, 17(1): 2096-2030.
[15] 王格格, 郭涛, 余游, 等. 基于生成对抗网络的无监督域适应分类模型[J]. 电子学报, 2020, 48(6): 1190-1197
WANG Gege, GUO Tao, YU You, et al. Unsupervised domain adaptation classification model based on generative adversarial network[J]. Acta electronica sinica, 2020, 48(6): 1190-1197
[16] SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: aligning domains using generative adversarial networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8503-8512.
[17] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 3723-3732.
[18] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine learning, 2010, 79(1/2): 151-175.
[19] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[20] HULL J J. A database for handwritten text recognition research[J]. IEEE transactions on pattern analysis and machine intelligence, 1994, 16(5): 550-554.
[21] NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]//Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Granada, Spain, 2011: 5-16.
[22] MOISEEV B, KONEV A, CHIGORIN A, et al. Evaluation of traffic sign recognition methods trained on synthetically generated data[C]//Proceedings of the 15th International Conference on Advanced Concepts for Intelligent Vision Systems. Poznań, Poland: Springer, 2013: 576-583.
[23] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: a multi-class classification competition[C]//Proceedings of 2011 International Joint Conference on Neural Networks. San Jose, USA: IEEE, 2011: 1453-1460.
[24] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016: 343-351.
[25] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 7167-7176.
[26] LIU Mingyu, TUZEL O. Coupled generative adversarial networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016: 469-477.
[27] LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018: 1647-1657.
[28] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(2605): 2579-2605.
相似文献/References:
[1]王鑫,郭鑫垚,魏巍,等.对抗样本三元组约束的度量学习算法[J].智能系统学报,2021,16(1):30.[doi:10.11992/tis.202009050]
 WANG Xin,GUO Xinyao,WEI Wei,et al.Metric learning algorithm with adversarial sample triples constraints[J].CAAI Transactions on Intelligent Systems,2021,16(6):30.[doi:10.11992/tis.202009050]
[2]莫宏伟,傅智杰.基于迁移学习的无监督跨域人脸表情识别[J].智能系统学报,2021,16(3):397.[doi:10.11992/tis.202008034]
 MO Hongwei,FU Zhijie.Unsupervised cross-domain expression recognition based on transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(6):397.[doi:10.11992/tis.202008034]

备注/Memo

收稿日期:2020-10-19。
基金项目:国家自然科学基金项目(61601230)
作者简介:李庆勇,硕士研究生,主要研究方向为无监督学习和计算机视觉;何军,副教授,主要研究方向为机器学习、计算机视觉、最优化方法。获发明专利授权4项,发表学术论文30余篇;张春晓,硕士研究生,主要研究方向为无监督学习和计算机视觉
通讯作者:何军.E-mail:jhe@nuist.edu.cn

更新日期/Last Update: 2021-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134