[1]胡洁,范勤勤,王直欢.融合分区和局部搜索的多模态多目标优化[J].智能系统学报,2021,16(4):774-784.[doi:10.11992/tis.202010026]
 HU Jie,FAN Qinqin,WANG Zhihuan.Multimodal multi-objective optimization combining zoning and local search[J].CAAI Transactions on Intelligent Systems,2021,16(4):774-784.[doi:10.11992/tis.202010026]
点击复制

融合分区和局部搜索的多模态多目标优化(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年4期
页码:
774-784
栏目:
学术论文—人工智能基础
出版日期:
2021-07-05

文章信息/Info

Title:
Multimodal multi-objective optimization combining zoning and local search
作者:
胡洁1 范勤勤12 王直欢1
1. 上海海事大学 物流研究中心,上海 201306;
2. 上海交通大学 系统控制与信息处理教育部重点实验室,上海 200240
Author(s):
HU Jie1 FAN Qinqin12 WANG Zhihuan1
1. Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
2. Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai JiaoTong University, Shanghai 200240, China
关键词:
多模态多目标优化分区搜索局部搜索协方差矩阵自适应策略种群多样性等价解多模态多目标粒子群算法
Keywords:
multimodal multi-objective optimizationzoning searchlocal searchcovariance matrix adaptation evolutionary strategypopulation diversityequivalent solutionsmultimodal multi-objective particle swarm optimization
分类号:
TP301.6
DOI:
10.11992/tis.202010026
摘要:
为解决多模态多目标优化中种群多样性维持难和所得等价解数量不足问题,基于分区搜索和局部搜索,本研究提出一种融合分区和局部搜索的多模态多目标粒子群算法(multimodal multi-objective particle swarm optimization combing zoning search and local search,ZLS-SMPSO-MM)。在所提算法中,整个搜索空间被分割成多个子空间以维持种群多样性和降低搜索难度;然后,使用已有的自组织多模态多目标粒子群算法在每个子空间搜索等价解和挖掘邻域信息,并利用局部搜索能力较强的协方差矩阵自适应算法对有潜力的区域进行精细搜索。通过14个多模态多目标优化问题测试,并与其他5种知名算法进行比较;实验结果表明ZLS-SMPSO-MM在决策空间能够找到更多的等价解,且整体性能要好于所比较算法。
Abstract:
To maintain population diversity and find a sufficient number of equivalent solutions in multimodal multi-objective optimization, a multimodal multi-objective particle swarm optimization algorithm with zoning and local searches (ZLS-SMPSO-MM) is proposed in this study. In the proposed algorithm, which is based on zoning search and local search, the entire search space is divided into several subspaces to maintain population diversity and reduce search difficulty. Subsequently, an existing self-organizing multimodal multi-objective particle swarm algorithm is used to search equivalent solutions and mine neighborhood information in each subspace, and the covariance matrix adaptation algorithm, which has a better local search ability, is utilized for a refined search in promising regions. Lastly, the performance of ZLS-SMPSO-MM is tested on 14 multimodal multi-objective optimization problems and compared with that of other five state-of-the-art algorithms. Experimental results show that the proposed algorithm can find more equivalent solutions in the decision space and its overall performance is better than that of the compared algorithms.

参考文献/References:

[1] BRANKE J. Multiobjective optimization[M]. Berlin: Springer, 2008.
[2] LIANG J J, YUE C T, QU B Y. Multimodal multi-objective optimization: a preliminary study[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation. Vancouver, Canada: IEEE, 2016: 2454-2461.
[3] LI Xiaodong. Niching without niching parameters: particle swarm optimization using a ring topology[J]. IEEE transactions on evolutionary computation, 2010, 14(4): 150-169.
[4] YUE Caitong, QU Boyang, LIANG Jing. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems[J]. IEEE transactions on evolutionary computation, 2018, 22(5): 805-817.
[5] LIANG Jing, GUO Qianqian, YUE Caitong, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems[C]//Proceedings of the 9th International Conference on Swarm Intelligence. Shanghai, China: Springer, 2018: 550-560.
[6] LI Zhihui, SHI Li, YUE Caitong, et al. Differential evolution based on reinforcement learning with fitness ranking for solving multimodal multiobjective problems[J]. Swarm and evolutionary computation, 2019, 49: 234-244.
[7] FAN Qing, YAN Xuefeng. Solving multimodal multiobjective problems through zoning search[J]. IEEE transactions on systems, man, and cybernetics: systems, 2019.
[8] ZHANG Weizheng, LI Guoqing, ZHANG Weiwei, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J]. Swarm and evolutionary computation, 2019, 50: 100569.
[9] LIANG Jing, XU Weiwei, YUE Caitong, et al. Multimodal multiobjective optimization with differential evolution[J]. Swarm and evolutionary computation, 2019, 44: 1028-1059.
[10] LIU Yiping, YEN G, GONG Dunwei. A Multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE transactions on evolutionary computation, 2019, 23(4): 660-674.
[11] LIN Qiuzhen, LIN Wu, ZHU Zexuan, et al. Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces[J]. IEEE transactions on evolutionary computation, 2021, 25(1): 130-144.
[12] ZHANG Xuewei, LIU Hao, TU Liangping. A modified particle swarm optimization for multimodal multi-objective optimization[J]. Engineering applications of artificial intelligence, 2020, 95: 103905.
[13] LI Guosen, YAN Li, QU Boyang. Multi-objective particle swarm optimization based on Gaussian sampling[J]. IEEE access, 2020, 8: 209717-209737.
[14] DEB K. Multi-objective evolutionary algorithms: introducing bias among pareto-optimal solutions[M]//GHOSH A, TSUTSUI S. Advances in Evolutionary Computing. Berlin: Springer, 2003.
[15] DEB K. Multi-objective genetic algorithms: problem difficulties and construction of test problems[J]. Evolutionary computation, 1999, 7(3): 205-230.
[16] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE transactions on evolutionary computation, 1999, 3(4): 257-271.
[17] KOHONEN T. The self-organizing map[J]. Neurocomputing, 1998, 21(1/2/3): 1-6.
[18] ZHANG Hu, ZHOU Aimin, SONG Shenmin, et al. A self-organizing multiobjective evolutionary algorithm[J]. IEEE transactions on evolutionary computation, 2016, 20(5): 792-806.
[19] HANSEN N, OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary computation, 2001, 9(2): 159-195.
[20] 李焕哲. 两阶段搜索的多峰优化算法研究[D]. 武汉: 武汉大学, 2017.
LI Huanzhe. Research on multimodal optimization algorithm with two-stage search[D]. Wuhan: Wuhan University, 2017.
[21] RUDOLPH G, NAUJOKS B, PREUSS M. Capabilities of EMOA to detect and preserve equivalent Pareto subsets[C]//Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Matsushima, Japan: Springer, 2007: 36-50.
[22] DEB K, TIWARI S. Omni-optimizer: a procedure for single and multi-objective optimization[C]//Proceedings of the 3rd International Conference on Evolutionary Multi-criterion Optimization, Third International Conference. Guanajuato, Mexico: Springer, 2006: 47-61.
[23] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics bulletin, 1945, 1(6): 80-83.
[24] FRIEDMAN M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance[J]. Journal of the American statistical association, 1937, 32(200): 675-701.

备注/Memo

备注/Memo:
收稿日期:2020-10-23。
基金项目:国家重点研发计划项目(2016YFC0800200);国家自然科学基金项目(61603244);中国博士后科学基金项目(2018M642017)
作者简介:胡洁,硕士研究生,主要研究方向为多模态多目标优化;范勤勤,副教授,博士生导师,主要研究方向为多目标优化、机器学习、进化计算。发表学术论文40余篇;王直欢,高级工程师,主要研究方向为大数据、进化计算、智能信息处理
通讯作者:范勤勤.E-mail:forever123fan@163.com
更新日期/Last Update: 1900-01-01