[1]胡洁,范勤勤,王直欢.融合分区和局部搜索的多模态多目标优化[J].智能系统学报,2021,16(4):774-784.[doi:10.11992/tis.202010026]
 HU Jie,FAN Qinqin,WANG Zhihuan.Multimodal multi-objective optimization combining zoning and local search[J].CAAI Transactions on Intelligent Systems,2021,16(4):774-784.[doi:10.11992/tis.202010026]
点击复制

融合分区和局部搜索的多模态多目标优化

参考文献/References:
[1] BRANKE J. Multiobjective optimization[M]. Berlin: Springer, 2008.
[2] LIANG J J, YUE C T, QU B Y. Multimodal multi-objective optimization: a preliminary study[C]//Proceedings of 2016 IEEE Congress on Evolutionary Computation. Vancouver, Canada: IEEE, 2016: 2454-2461.
[3] LI Xiaodong. Niching without niching parameters: particle swarm optimization using a ring topology[J]. IEEE transactions on evolutionary computation, 2010, 14(4): 150-169.
[4] YUE Caitong, QU Boyang, LIANG Jing. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems[J]. IEEE transactions on evolutionary computation, 2018, 22(5): 805-817.
[5] LIANG Jing, GUO Qianqian, YUE Caitong, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems[C]//Proceedings of the 9th International Conference on Swarm Intelligence. Shanghai, China: Springer, 2018: 550-560.
[6] LI Zhihui, SHI Li, YUE Caitong, et al. Differential evolution based on reinforcement learning with fitness ranking for solving multimodal multiobjective problems[J]. Swarm and evolutionary computation, 2019, 49: 234-244.
[7] FAN Qing, YAN Xuefeng. Solving multimodal multiobjective problems through zoning search[J]. IEEE transactions on systems, man, and cybernetics: systems, 2019.
[8] ZHANG Weizheng, LI Guoqing, ZHANG Weiwei, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J]. Swarm and evolutionary computation, 2019, 50: 100569.
[9] LIANG Jing, XU Weiwei, YUE Caitong, et al. Multimodal multiobjective optimization with differential evolution[J]. Swarm and evolutionary computation, 2019, 44: 1028-1059.
[10] LIU Yiping, YEN G, GONG Dunwei. A Multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE transactions on evolutionary computation, 2019, 23(4): 660-674.
[11] LIN Qiuzhen, LIN Wu, ZHU Zexuan, et al. Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces[J]. IEEE transactions on evolutionary computation, 2021, 25(1): 130-144.
[12] ZHANG Xuewei, LIU Hao, TU Liangping. A modified particle swarm optimization for multimodal multi-objective optimization[J]. Engineering applications of artificial intelligence, 2020, 95: 103905.
[13] LI Guosen, YAN Li, QU Boyang. Multi-objective particle swarm optimization based on Gaussian sampling[J]. IEEE access, 2020, 8: 209717-209737.
[14] DEB K. Multi-objective evolutionary algorithms: introducing bias among pareto-optimal solutions[M]//GHOSH A, TSUTSUI S. Advances in Evolutionary Computing. Berlin: Springer, 2003.
[15] DEB K. Multi-objective genetic algorithms: problem difficulties and construction of test problems[J]. Evolutionary computation, 1999, 7(3): 205-230.
[16] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE transactions on evolutionary computation, 1999, 3(4): 257-271.
[17] KOHONEN T. The self-organizing map[J]. Neurocomputing, 1998, 21(1/2/3): 1-6.
[18] ZHANG Hu, ZHOU Aimin, SONG Shenmin, et al. A self-organizing multiobjective evolutionary algorithm[J]. IEEE transactions on evolutionary computation, 2016, 20(5): 792-806.
[19] HANSEN N, OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary computation, 2001, 9(2): 159-195.
[20] 李焕哲. 两阶段搜索的多峰优化算法研究[D]. 武汉: 武汉大学, 2017.
LI Huanzhe. Research on multimodal optimization algorithm with two-stage search[D]. Wuhan: Wuhan University, 2017.
[21] RUDOLPH G, NAUJOKS B, PREUSS M. Capabilities of EMOA to detect and preserve equivalent Pareto subsets[C]//Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Matsushima, Japan: Springer, 2007: 36-50.
[22] DEB K, TIWARI S. Omni-optimizer: a procedure for single and multi-objective optimization[C]//Proceedings of the 3rd International Conference on Evolutionary Multi-criterion Optimization, Third International Conference. Guanajuato, Mexico: Springer, 2006: 47-61.
[23] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics bulletin, 1945, 1(6): 80-83.
[24] FRIEDMAN M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance[J]. Journal of the American statistical association, 1937, 32(200): 675-701.

备注/Memo

收稿日期:2020-10-23。
基金项目:国家重点研发计划项目(2016YFC0800200);国家自然科学基金项目(61603244);中国博士后科学基金项目(2018M642017)
作者简介:胡洁,硕士研究生,主要研究方向为多模态多目标优化;范勤勤,副教授,博士生导师,主要研究方向为多目标优化、机器学习、进化计算。发表学术论文40余篇;王直欢,高级工程师,主要研究方向为大数据、进化计算、智能信息处理
通讯作者:范勤勤.E-mail:forever123fan@163.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134